Skip to main content

Advertisement

Log in

The clinical and prognostic significance of CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy

  • Original Article
  • Published:
Tumor Biology

Abstract

Myeloid-derived suppressor cells (MDSCs) are key player in mediating systemic immunosuppression, and their accumulation and expansion in the periphery and tumor have been iteratively observed in patients with various types of cancer. It has been reported that CD14+HLA-DR−/low MDSCs are increased in hepatocellular carcinoma (HCC) patients; however, the clinical significance of MDSC alteration in HCC patients after treatment is poorly studied. In this study, we examined the frequency of MDSCs in 92 HCC patients, 14 chronic liver disease patients without HCC, and 22 healthy controls by flow cytometric analysis. The associations between the clinical features and the frequency of MDSCs were analyzed. In particular, we further examined the prognostic impact of MDSCs on the overall survival of HCC patients receiving radiation therapy. The frequency of MDSCs in HCC patients was significantly increased and correlated with tumor stage, size, burden, and Child-Pugh classification but not with biochemical parameters of liver function. In HCC patients who received radiation therapy, the frequency of MDSCs after treatment significantly decreased and was inversely correlated with overall survival time. In multivariate analysis, only post-treatment MDSC ratio and Child-Pugh classification were correlated with the prognosis of HCC patients. Patients with a high frequency of MDSCs after radiotherapy should be closely followed, and the inhibition of MDSCs may improve the prognosis of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  2. French SW, Lee J, Zhong J, Morgan TR, Buslon V, Lungo W, et al. Alcoholic liver disease—hepatocellular carcinoma transformation. J Gastrointest Oncol. 2012;3:174–81.

    PubMed  PubMed Central  Google Scholar 

  3. Curley SA, Izzo F, Ellis LM, Nicolas Vauthey J, Vallone P. Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg. 2000;232:381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lencioni R, Chen XP, Dagher L, Venook AP. Treatment of intermediate/advanced hepatocellular carcinoma in the clinic: how can outcomes be improved? Oncologist. 2010;15 Suppl 4:42–52.

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita T, Arai K, Sunagozaka H, Ueda T, Terashima T, Mizukoshi E, et al. Randomized, phase ii study comparing interferon combined with hepatic arterial infusion of fluorouracil plus cisplatin and fluorouracil alone in patients with advanced hepatocellular carcinoma. Oncology. 2011;81:281–90.

    Article  CAS  PubMed  Google Scholar 

  6. Feng M, Ben-Josef E. Radiation therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2011;21:271–7.

    Article  PubMed  Google Scholar 

  7. Izumi N, Asahina Y, Noguchi O, Uchihara M, Kanazawa N, Itakura J, et al. Risk factors for distant recurrence of hepatocellular carcinoma in the liver after complete coagulation by microwave or radiofrequency ablation. Cancer. 2001;91:949–56.

    Article  CAS  PubMed  Google Scholar 

  8. Komorizono Y, Oketani M, Sako K, Yamasaki N, Shibatou T, Maeda M, et al. Risk factors for local recurrence of small hepatocellular carcinoma tumors after a single session, single application of percutaneous radiofrequency ablation. Cancer. 2003;97:1253–62.

    Article  PubMed  Google Scholar 

  9. Butterfield LH. Immunotherapeutic strategies for hepatocellular carcinoma. Gastroenterology. 2004;127:S232–41.

    Article  CAS  PubMed  Google Scholar 

  10. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine ima901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–61.

    Article  CAS  PubMed  Google Scholar 

  11. Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer immunol Immunother. 2010;59:1593–600.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011;11:802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces cd4(+)cd25(+)foxp3(+) T cells. Gastroenterology. 2008;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  14. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, et al. Increase in cd14+hla-dr−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62:1421–30.

    Article  CAS  PubMed  Google Scholar 

  15. Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of garp(+)ctla-4(+)foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunol. 2015;4:e954829.

    Article  Google Scholar 

  18. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One. 2013;8:e57114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011;118:2254–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol. 2013;59:1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor gr+cd11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6:409–21.

    Article  CAS  PubMed  Google Scholar 

  24. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: targets for therapy. Oncoimmunology. 2013;2:e24117.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, et al. Immunosuppressive cd14+hla-drlow/− monocytes in prostate cancer. Prostate. 2010;70:443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P. Increased circulating immunosuppressive cd14(+)hla-dr(−/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res. 2011;39:1381–91.

    Article  CAS  PubMed  Google Scholar 

  27. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive cd14+hla-dr−/low cells in melanoma patients are stat3hi and overexpress cd80, cd83, and dc-sign. Cancer Res. 2010;70:4335–45.

    Article  CAS  PubMed  Google Scholar 

  28. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls t-lymphocyte functions. Trends Immunol. 2003;24:302–6.

    Article  CAS  PubMed  Google Scholar 

  29. Napolitano M, D’Alterio C, Cardone E, Trotta AM, Pecori B, Rega D, et al. Peripheral myeloid-derived suppressor and T regulatory pd-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget. 2015;6:8261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen HM, Ma G, Gildener-Leapman N, Eisenstein S, Coakley BA, Ozao J, et al. Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin Cancer Res. 2015;21:4073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60:1419–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.

    Article  CAS  PubMed  Google Scholar 

  33. Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med. 2013;5:173sr172.

    Article  Google Scholar 

  34. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.

    Article  CAS  PubMed  Google Scholar 

  35. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-pd-l1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Yang Yang for his excellent technical assistance in flow cytometry. This work was supported by the Beijing Natural Science Foundation (No. 7133253). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Feng.

Ethics declarations

The study protocol was approved by the Ethics Committee of Beijing Chao-Yang Hospital. All participants provided written informed consent.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., An, G., Xie, S. et al. The clinical and prognostic significance of CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumor Biol. 37, 10427–10433 (2016). https://doi.org/10.1007/s13277-016-4916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4916-2

Keywords

Navigation