Skip to main content

Advertisement

Log in

D-loop somatic mutations and ∼5 kb “common” deletion in mitochondrial DNA: important molecular markers to distinguish oral precancer and cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Apart from genomic DNA, mutations at mitochondrial DNA (mtDNA) have been hypothesized to play vital roles in cancer development. In this study, ∼5 kb deletion and D-loop mutations in mtDNA and alteration in mtDNA content were investigated in buccal smears from 104 healthy controls and 74 leukoplakia and 117 cancer tissue samples using Taqman-based quantitative assay and re-sequencing. The ∼5 kb deletion in mtDNA was significantly less (9.8 and 10.5 folds, P < 0.0001) in cancer tissues compared to control and leukoplakia tissues, respectively. On the other hand, somatic mutations in D-loop, investigated in 54 controls, 50 leukoplakias and 56 cancer patients, were found to be significantly more in cancer tissues, but not in leukoplakia tissues, compared to control (Z-score = 5.4). MtDNA contents were observed to be significantly more in leukoplakia (2.1 folds, P = 0.004) and cancer (1.6 folds, P = 0.03) tissues compared to control tissues. So, D-loop somatic mutations and ∼5 kb deletion patterns could be used as distinguishing markers between precancer and cancer tissues. This observation further suggests that somatic mutations in D-loop may facilitate carcinogenesis and cancer cells with less ∼5 kb deletion, i.e., intact mtDNA, may become resistant to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HVS:

Hypervariable sequence

np:

Nucleotide position

mtDNA:

Mitochondrial DNA

D-loop:

Displacement loop

ROS:

Reactive oxygen species

OXPHOS:

Oxidative phosphorylation

References

  1. Ballinger SW, Bouder TG, Davis GS, Judice SA, Nicklas JA, Albertini RJ. Mitochondrial genome damage associated with cigarette smoking. Cancer Res. 1996;56:5692–7.

    CAS  PubMed  Google Scholar 

  2. Ferlay J, Bray F, Pisani P, Parkin DM. Cancer incidence, mortality and prevalence. GLOBOCAN 2002. Worldwide IARC Cancer Base No. 5, version2.0. Lyon: IARC Press; 2004.

    Google Scholar 

  3. Abnet CC, Huppi K, Carrera A, Armistead D, McKenney K, Hu N, et al. Control region mutations and the ‘common deletion’ are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma. BMC Cancer. 2004;4:30–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jakupciak JP, Wang W, Markowitz ME, Ally D, Coble M, Srivastava S, et al. Mitochondrial DNA as a cancer biomarker. J Mol Diagn. 2005;7:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee HC, Yin PH, Yu TN, Chang YD, Hsu WC, Kao SY, et al. Accumulation of mitochondrial DNA deletions in human oral tissues—effects of betel quid chewing and oral cancer. Mut Res. 2001;493:67–74.

    Article  CAS  Google Scholar 

  6. Lee HC, Yin PH, Lin JC, Wu C, Chen C, Wu C, et al. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci. 2005;1042:109–22.

    Article  CAS  PubMed  Google Scholar 

  7. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. MtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A. 2005;102:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu CW, Yin PH, Hung WY, Li AFY, Li SH, Chi CW, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Gene Chromosome Cancer. 2005;44:19–28.

    Article  CAS  Google Scholar 

  9. Lièvre A, Blons H, Houllier AM, Laccourreye O, Brasnu D, Beaune P, et al. Clinicopathological significance of mitochondrial D-Loop mutations in head and neck carcinoma. Br J Cancer. 2006;94:692–7.

    PubMed  PubMed Central  Google Scholar 

  10. Pang LJ, Shao JY, Liang XM, Xia YF, Zeng YX. Mitochondrial DNA somatic mutations are frequent in nasopharyngeal carcinoma. Cancer Biol Ther. 2008;7:198–207.

    Article  CAS  PubMed  Google Scholar 

  11. Yu M, Shi Y, Zhang Y, Zhou Y, Yang Y, Wei X, et al. Sequence variations of mitochondrial DNA D-loop region are highly frequent events in familial breast cancer. J Biomed Sci. 2008;15:535–43.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou S, Kachhap S, Sun W, Wu G, Chuang A, Poeta L, et al. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci U S A. 2007;104:7540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prior SL, Griffiths AP, Baxter JM, Baxter PW, Hodder SC, Silvester KC, et al. Mitochondrial DNA mutations in oral squamous cell carcinoma. Carcinogenesis. 2006;27:945–50.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma H, Singh A, Sharma C, Jain SK, Singh N. Mutations in the mitochondrial DNA D-loop region are frequent in cervical cancer. Cancer Cell Int. 2005; 5: DOI:10.1186/1475-2867-5-34.

  15. Tan D, Bai RK, Wong LJ. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res. 2002;62:972–6.

    CAS  PubMed  Google Scholar 

  16. Tan D, Chang J, Chen W, Agress LJ, Yeh K, Wang B, et al. Somatic mitochondrial DNA mutations in oral cancer of betel quid chewers. Ann N Y Acad Sci. 2004;1011:310–6.

    Article  CAS  PubMed  Google Scholar 

  17. Tang M, Baez S, Pruyas M, Diaz A, Calvo A, Riquelme E, et al. Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res. 2004;10:1041–6.

    Article  CAS  PubMed  Google Scholar 

  18. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007;7:106–18.

    Article  CAS  PubMed  Google Scholar 

  19. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mut Res. 1999;423:11–21.

    Article  CAS  Google Scholar 

  20. Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop SJ, et al. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem. 1998;257:192–201.

    Article  CAS  PubMed  Google Scholar 

  21. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao YB, Yang HY, Zhang XW, Chen GY. Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance. World J Gastroenterol. 2005;11:3304–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ha PK, Tong BC, Westra WH, Sanchez-Cespedes M, Parrella P, Zahurak M, et al. Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin Cancer Res. 2002;8:2260–5.

    CAS  PubMed  Google Scholar 

  24. Mithani SK, Taube JM, Zhou S, Smith IM, Koch WM, Westra WH, et al. Mitochondrial mutations are a late event in the progression of head and neck squamous cell cancer. Clin Cancer Res. 2007;13:4331–5.

    Article  CAS  PubMed  Google Scholar 

  25. Kamalidehghan B, Houshmand M, Ismail P, Panahi MS, Akbari MH. Delta mtDNA4977 is more common in non-tumoral cells from gastric cancer sample. Arch Med Res. 2006;37:730–5.

    Article  CAS  PubMed  Google Scholar 

  26. Shieh DB, Chou WP, Wei YH, Wong TY, Jin YT. Mitochondrial DNA 4,977-bp deletion in paired oral cancer and precancerous lesions revealed by laser microdissection and real-time quantitative PCR. Ann N Y Acad Sci. 2004;1011:154–67.

    Article  CAS  PubMed  Google Scholar 

  27. Ye C, Shu XO, Wen W, Pierce L, Courtney R, Gao YT, et al. Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat. 2008;108:427–34.

    Article  CAS  PubMed  Google Scholar 

  28. Sikdar N, Paul RR, Roy B. Glutathione S-transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int J Cancer. 2004;109:95–101.

    Article  CAS  PubMed  Google Scholar 

  29. Miller SA, Dykes DD, Polesky HK. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Masayesva BG, Mambo E, Taylor RJ, Goloubeva OG, Zhou S, Cohen Y, et al. Mitochondrial DNA content increase in response to cigarette smoking. Cancer Epidemiol Biomarkers Prev. 2006;15:19–24.

    Article  CAS  PubMed  Google Scholar 

  31. Qu F, Liu X, Zhou F, Yang H, Bao G, He X, et al. Association between mitochondrial DNA content in leukocytes and colorectal cancer risk: a case–control analysis. Cancer. 2011;117:3148–55.

    Article  CAS  PubMed  Google Scholar 

  32. Higuchi M. Regulation of mitochondrial DNA content and cancer. Mitochondrion. 2007;7:53–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, et al. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res. 2004;10:8512–5.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang WW, Rosenbaum E, Mambo E, Zahurak M, Masayesva B, Carvalho AL, et al. Decreased mitochondrial DNA content in post-treatment salivary rinses from head and neck cancer patients. Clin Cancer Res. 2006;12:1564–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife. 2014;3:e02935. doi:10.7554/elife.02935.

    Article  PubMed Central  Google Scholar 

  36. Dani MA, Dani SU, Lima SP, Martinez A, Rossi BM, Soares F, et al. Less DeltamtDNA4977 than normal in various types of tumors suggests that cancer cells are essentially free of this mutation. Genet Mol Res. 2004;3:395–9.

    CAS  PubMed  Google Scholar 

  37. Nie H, Shu H, Vartak R, Milstein AC, Mo Y, Hu X, et al. Mitochondrial common deletion, a potential biomarker for cancer occurrence, is selected in cancer background: a meta-analysis of 38 studies. PLoS ONE. 2013;8:e67953. doi:10.1371/journal.pone.0067953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu CY, Lee CF, Wei YH. Activation of PKCdelta and ERK1/2 in the sensitivity to UV-induced apoptosis of human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta. 2009;1792:783–90.

    Article  CAS  PubMed  Google Scholar 

  39. Cavalli LR, Varella-Garcia M, Liang BC. Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 1997;8:1189–98.

    CAS  PubMed  Google Scholar 

  40. Burgart LJ, Zeng J, Shu Q, Stricklar JG, Shibata D. Somatic mitochondrial mutation in gastric cancer. Am J Pathol. 1995;147:1105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu SA, Jiang RS, Wang WY, Lin JC. Somatic mutations in the D-loop of mitochondrial DNA in head and neck squamous cell carcinoma. Head Neck. 2014. doi:10.1002/hed.23680.

    Google Scholar 

  42. Liu SA, Jiang RS, Chen FJ, Wang WY, Lin JC. Somatic mutations in the D-loop of mitochondrial DNA in oral squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2012;269:165–70.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful for the cooperation received from all patients and healthy individuals. We acknowledge the technical help from Mr. Badal Dey. This work was supported by Indian Statistical Institute.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

RNaseP is a single copy nuclear gene that was used as nuclear DNA standard. ND1 is a rarely deleted region of the mitochondrion that was used to estimate mitochondrial DNA content. XDEL, DNA sequences from the flanks of 4977 bp deletion region, was used for to amplify specifically mtDNA having 4977 bp deletion. Though several other deletions are possible in mtDNA (marked by thin colored lines), XDEL is specific to 4977 bp deletion (marked by thick red line). Black () arrow indicates arbitrary positions of forward and reverse primers used for amplification of RNaseP, ND1and XDEL for Taqman assay. (GIF 41 kb)

High Resolution Image (TIFF 3781 kb)

Supplementary Figure 2

∆Ct (XDEL-ND1) values were drawn against ages (yrs) of patients and controls. Blue dots (), red dots () and green dots () were values for cancer, leukoplakia and control samples, respectively. Regression lines (blue, red and green) were drawn to check the R2 and P values. (GIF 38 kb)

High Resolution Image (TIFF 3777 kb)

Supplementary Figure 3

Number of mutations in D-loop of the cancer patients was drawn against the age (yrs) of them. Regression line shows the value of R2 = 0.0047 and p value = 0.78 (GIF 27 kb)

High Resolution Image (TIFF 2782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Chattopadhyay, E., Ray, J.G. et al. D-loop somatic mutations and ∼5 kb “common” deletion in mitochondrial DNA: important molecular markers to distinguish oral precancer and cancer. Tumor Biol. 36, 3025–3033 (2015). https://doi.org/10.1007/s13277-014-2937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2937-2

Keywords

Navigation