Skip to main content

Advertisement

Log in

Overexpression and cytoplasmic accumulation of Hepl is associated with clinicopathological parameters and poor prognosis in non-small cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Hepl, first described in 2008, is the fourth member of the Crk-associated substrate (CAS) family and is specifically expressed in the lung. Compared to other CAS proteins, Hepl has a varying effect on cell migration in different cell types. We speculated that Hepl may play a role in lung cancer invasion and metastasis. We quantified the expression and subcellular localization of Hepl in 143 non-small cell lung cancer (NSCLC) tissues, adjacent noncancerous tissues, and eight lung cancer cell lines using Western blotting, immunohistochemistry, and immunofluorescent staining. Expression of Hepl was correlated with the clinicopathological features of NSCLC. Hepl was overexpressed in 72.3 % (103/143) of the NSCLC tissues, compared to the adjacent noncancerous lung tissues (P = 0.022). Overexpression of Hepl was associated with lymph node metastasis and high TNM stage (P = 0.005 and P = 0.045, respectively). Kaplan–Meier survival curves and the log-rank test indicated that overexpression of Hepl correlated with poorer overall survival in NSCLC (P < 0.001), and Cox regression analysis demonstrated that overexpression of Hepl was an independent prognostic factor in NSCLC. Furthermore, cytoplasmic accumulation of Hepl was observed in a high metastatic potential lung cancer cell lines (H1299 and BE1), but not in low metastatic potential cell lines (LTE and A549). This study reveals that Hepl is overexpressed in the nucleus and aberrantly accumulates in the cytoplasm of NSCLC cells, and indicates that Hepl may play a role in the progression of lung cancer, including lymph node metastasis and TNM stage. Additionally, Hepl may be a useful prognostic factor in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci. 2010;67:1025–48.

    Article  PubMed  CAS  Google Scholar 

  2. Brabek J, Constancio SS, Siesser PF, Shin NY, Pozzi A, Hanks SK. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol Cancer Res. 2005;3:307–15.

    Article  PubMed  CAS  Google Scholar 

  3. O'Neill GM, Seo S, Serebriiskii IG, Lessin SR, Golemis EA. A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res. 2007;67:8975–9.

    Article  PubMed  Google Scholar 

  4. Hisakawa N, Tanaka H, Hosono O, Nishijima R, Ohashi Y, Saito S, et al. Aberrant responsiveness to RANTES in synovial fluid T cells from patients with rheumatoid arthritis. J Rheumatol. 2002;29:1124–34.

    PubMed  CAS  Google Scholar 

  5. Dutt P, Wang JF, Groopman JE. Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol. 1998;161:3652–8.

    PubMed  CAS  Google Scholar 

  6. Donlin LT, Danzl NM, Wanjalla C, Alexandropoulos K. Deficiency in expression of the signaling protein Sin/Efs leads to T-lymphocyte activation and mucosal inflammation. Mol Cell Biol. 2005;25:11035–46.

    Article  PubMed  CAS  Google Scholar 

  7. Law SF, O'Neill GM, Fashena SJ, Einarson MB, Golemis EA. The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol Cell Biol. 2000;20:5184–95.

    Article  PubMed  CAS  Google Scholar 

  8. Kim W, Kook S, Kim DJ, Teodorof C, Song WK. The 31-kDa caspase-generated cleavage product of p130cas functions as a transcriptional repressor of E2A in apoptotic cells. J Biol Chem. 2004;279:8333–42.

    Article  PubMed  CAS  Google Scholar 

  9. Kim W, Seok Kang Y, Soo Kim J, Shin NY, Hanks SK, Song WK. The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in transforming growth factor-beta signaling. Mol Biol Cell. 2008;19:2135–46.

    Article  PubMed  CAS  Google Scholar 

  10. Hakak Y, Martin GS. Cas mediates transcriptional activation of the serum response element by Src. Mol Cell Biol. 1999;19:6953–62.

    PubMed  CAS  Google Scholar 

  11. Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet. 1998;19:361–5.

    Article  PubMed  CAS  Google Scholar 

  12. Seo S, Asai T, Saito T, Suzuki T, Morishita Y, Nakamoto T, et al. Crk-associated substrate lymphocyte type is required for lymphocyte trafficking and marginal zone B cell maintenance. J Immunol. 2005;175:3492–501.

    PubMed  CAS  Google Scholar 

  13. Cabodi S, del Pilar C-LM, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer. 2010;10:858–70.

    Article  PubMed  CAS  Google Scholar 

  14. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol. 1998;140:961–72.

    Article  PubMed  CAS  Google Scholar 

  15. Defilippi P, Di Stefano P, Cabodi S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 2006;16:257–63.

    Article  PubMed  CAS  Google Scholar 

  16. Tikhmyanova N, Golemis EA. NEDD9 and BCAR1 negatively regulate E-cadherin membrane localization, and promote E-cadherin degradation. PLoS One. 2011;6:e22102.

    Article  PubMed  CAS  Google Scholar 

  17. Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A, et al. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell. 2008;19:1627–36.

    Article  PubMed  CAS  Google Scholar 

  18. Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G, Golemis EA. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:3327–37.

    PubMed  CAS  Google Scholar 

  19. Nakamoto T, Sakai R, Ozawa K, Yazaki Y, Hirai H. Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J Biol Chem. 1996;271:8959–65.

    Article  PubMed  CAS  Google Scholar 

  20. Alexandropoulos K, Baltimore D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 1996;10:1341–55.

    Article  PubMed  CAS  Google Scholar 

  21. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC. Pathology and Genetics: tumours of the lung, pleura, thymus and heart. Lyon: IARC; 2004.

    Google Scholar 

  22. Goldstraw P. Updated staging system for lung cancer. Surg Oncol Clin N Am. 2011;20:655–66.

    Article  PubMed  Google Scholar 

  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  24. Natarajan M, Stewart JE, Golemis EA, Pugacheva EN, Alexandropoulos K, Cox BD, et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene. 2006;25:1721–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81000942 to Yuan Miao and No. 30900562 to Yang Liu).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Wang, L., Liu, Y. et al. Overexpression and cytoplasmic accumulation of Hepl is associated with clinicopathological parameters and poor prognosis in non-small cell lung cancer. Tumor Biol. 34, 107–114 (2013). https://doi.org/10.1007/s13277-012-0517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0517-x

Keywords

Navigation