Skip to main content
Log in

CFD-based prediction of wall-pressure spectra under a turbulent boundary layer with adverse pressure gradient

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

A model of the spectrum of wall-pressure fluctuations under a turbulent boundary layer based on an analytical solution of the Poisson equation is presented. This model is suited for aeroacoustic prediction based on CFD-extracted flow information but requires statistical properties of the boundary-layer turbulence that are not resolved in steady-state simulations and need to be modelled. For this reason, this paper uses Lattice-Boltzmann (DNS-LBM) and Navier-Stokes Direct Numerical Simulations (DNS-NS) of an airfoil in a wind-tunnel jet to investigate the link between turbulence and wall-pressure statistics and validate the assumptions made in the application of the analytical model. The use of input from two numerical simulation methods allows generalizing the results of the analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

c :

Airfoil chord-length

\(\delta\) :

Boundary layer thickness

\({\varvec{k}}=(k_{1},k_{3})\) :

Planar wavenumber vector

\(k=\sqrt{k_{1}^{2} +k_{3}^{2}}\) :

Planar wavenumber amplitude

\({\tilde{k}}=kl\) :

Dimensionless wavenumber

\(\mathrm{K}_{z}\) :

Modified Bessel function of the second kind

l :

Turbulence characteristic length scale

M :

Mach number

p :

Fluctuating pressure variable

\(T_c\) :

Through-flow time over the airfoil

\(Re_c\) :

Reynolds number based on the airfoil chord

\(u_{i}\) :

Fluctuating velocity component

\(U_{0}\) :

Wind-tunnel exit velocity

\(U_{c}\) :

Convective speed of wall-pressure fluctuations

\(U_{e}\) :

External velocity above the boundary layer

\(\alpha\) :

Ratio of longitudinal to transverse integral length scale

\(\varLambda\) :

Longitudinal integral length scale of turbulence

\(\varphi _{pp}\) :

Power spectral density of wall-pressure fluctuations

\(\varphi _{22}\) :

Cross-spectral density of vertical velocity fluctuations

References

  1. Amiet, R.K.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 4(3), (1976)

  2. Lee, S.: Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA J., 56(5):1818–1829, 2019/02/11 (2018)

  3. Panton, R.L., Linebarger, J.H.: Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65(02), 261–287 (1974)

    Article  Google Scholar 

  4. Remmler, S., Christophe, J., Anthoine, J., Moreau, S.: Computation of wall-pressure spectra from steady flow data for noise prediction. AIAA J. 48(9), 1997–2007 (2010)

    Article  Google Scholar 

  5. Kamruzzaman, M., Lutz, Th, Würz, W., Shen, W.Z., Zhu, W.J., Hansen, M.O.L., Bertagnolio, F., Aa, H.: Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data. Wind Energy 15, 45–61 (2012)

    Article  Google Scholar 

  6. Grasso, G., Jaiswal, P., Wu, H., Moreau, S., Roger, M.: Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient. J. Fluid Mech. 877, 10071062 (2019)

    Article  MathSciNet  Google Scholar 

  7. Orestano, S.: Low-speed airfoil noise simulation - DNS post-processing on a controlled-diffusion airfoil. Master’s thesis, École Centrale de Lyon, Écully, France, September (2019)

  8. Gerolymos, G.A., Snchal, D., Vallet, I.: Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 720, 1565 (2013)

    Article  MathSciNet  Google Scholar 

  9. Kraichnan, R.H.: Pressure field within homogeneous anisotropic turbulence. J. Acoustical Soc. Am. 28(1), 64–72 (1956)

    Article  MathSciNet  Google Scholar 

  10. Hodgson, T.H.: Pressure fluctuations in shear flow turbulence. PhD thesis, The College of Aeronautics, Cranfield (1961)

  11. Wilson, D.K.: Three-dimensional correlation and spectral functions for turbulent velocities in homogeneous and surface-blocked boundary layers. Technical report, Army Research Laboratory (1997)

    Book  Google Scholar 

  12. Wilson, D.K.: Turbulence models and the synthesis of random fields for acoustic wave propagation calculations. Technical report, Army Research Laboratory (July 1998)

  13. von Kármán, Th: Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci. 34, 530–539 (1948)

    Article  MathSciNet  Google Scholar 

  14. Liepmann, H.W., Laufer, J., Liepmann, K.: On the spectrum of isotropic turbulence. Technical report, National Advisory Committee for Aeronautics (November 1951)

  15. Hunt, J.C.R.: A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61, 625–706 (1973)

    Article  MathSciNet  Google Scholar 

  16. Schlinker, R., Amiet, R.K.: Helicopter trailing edge noise. Technical report, NASA (1981)

  17. Taylor, G.I.: The spectrum of turbulence. Proceedings of the Royal Society of London. Ser. A - Math. Phys. Sci. 164(919):476 – 490, (1938)

  18. Hobbs, D.E., Weingold, H.D.: Development of controlled diffusion airfoils for multistage compressor application. J. Eng. Gas Turbines Power 106(2), 271–278 (1984)

    Article  Google Scholar 

  19. Moreau, S.: Symposium on the cd airfoil, https://www.researchgate.net/publication/304582435_CD-day_S-Moreau, June (2016)

  20. Moreau, S., Roger, M.: Effect of airfoil aerodynamic load on trailing edge noise. AIAA J. 43(1), 41–52 (2005)

    Article  Google Scholar 

  21. Padois, T., Laffay, P., Idier, A., Moreau, S.: Detailed experimental investigation of the aeroacoustic field around a Controlled-Diffusion airfoil. American Institute of Aeronautics and Astronautics, 2019/03/04 (2015)

  22. Sandberg, R.D.: Compressible-flow DNS with application to airfoil noise. Flow Turbulence Combustion 95, 211–229 (2015)

    Article  Google Scholar 

  23. Chen, Shiyi, Doolen, Gary D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  24. Wu, H., Moreau, S., Sandberg, R.: Effects of pressure gradient on the evolution of velocity gradient tensor invariant dynamics on a controlled-diffusion aerofoil at \(Re_{c}=150,000\). J. Fluid Mech. 868, 584–610 (2019)

    Article  MathSciNet  Google Scholar 

  25. Moreau, S., Sanjosé, M., Perot, F., Kim, M.-S.: Direct self-noise simulation of the installed controlled diffusion airfoil. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)

  26. Wu, H., Sanjosé, M., Moreau, S., Sandberg, R.D.: Direct numerical simulation of the self-noise radiated by the installed Controlled-Diffusion airfoil at transitional Reynolds number. In 24th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2018-3797, Atlanta, Georgia, USA (2018)

  27. Wu, H., Moreau, S., Sandberg, R.D.: On the noise generated by a controlled-diffusion aerofoil at rec= 1.5\(\times\) 105. J. Sound Vib., 487:115620 (2020)

  28. Magnaudet, J.: High-Reynolds-number turbulence in a shear-free boundary layer: revisiting the Hunt Graham theory. J. Fluid Mech. 484, 167196 (2003)

    Article  MathSciNet  Google Scholar 

  29. Goody, M.: Empirical spectral model of surface pressure fluctuations. AIAA J. 42(9), 1788–1794 (2004)

    Article  Google Scholar 

  30. Rozenberg, Y., Robert, G., Moreau, S.: Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50(10), 2168–2179 (2012)

    Article  Google Scholar 

  31. Sanjose, M., Meon, C., Moreau, S., Idier, A., Laffay, P.: Direct numerical simulation of acoustic reduction using serrated trailing-edge on an isolated airfoil. In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, June 2014. American Institute of Aeronautics and Astronautics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Grasso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors gratefully acknowledge the support of the European Union's Horizon 2020 research and innovation program under grant agreement no. 755543 (SCONE) and the Canadian NSERC Discovery grant (no RGPIN-2014-04111). This research was enabled in part by support provided by Calcul Québec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca). This work was performed within the framework of the LABEX CeLyA (ANR-10-LABX- 0060) of Université de Lyon, within the programme “Investissements d'Avenir” (ANR-16- IDEX-0005) operated by the French National Research Agency (ANR)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasso, G., Wu, H., Orestano, S. et al. CFD-based prediction of wall-pressure spectra under a turbulent boundary layer with adverse pressure gradient. CEAS Aeronaut J 12, 125–133 (2021). https://doi.org/10.1007/s13272-020-00484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-020-00484-5

Keywords

Navigation