Skip to main content
Log in

Optimization and enhanced production of α-amylase and protease by a newly isolated Bacillus licheniformis ZB-05 under solid-state fermentation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Eight different agro-residues were tested for α-amylase and protease production by using Bacillus licheniformis ZB-05. Among them, rice husk (RH) was proved as the best substrate for two enzymes (α-amylase 443 U/g and protease 469,000 U/g). Maximum enzyme production was observed to be 30 % initial moisture, with a growth period of 36 h in 20 and 30 % inoculum volumes for α-amylase and protease, respectively. The best enzyme recovery from solid mass was obtained when extracted with tap water. Among the tested various nitrogen sources, 1 % ammonium sulphate followed by 2 % Bacto liver, 2 % ammonium sulphate and 1 % Bacto casaminoacid served as the best inorganic and organic nitrogen sources for α-amylase and protease production, respectively. As additional carbon sources, 2 % soluble starch enhanced α-amylase production, while 1 % maltose enhanced protease production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal D, Patidar P, Banerjee T, Patil S (2005) Alkaline protease production by a soil isolate of Beauveria felina under SSF condition: parameter optimization and application to soy protein hydrolysis. Process Biochem 41:1131–1136

    Article  Google Scholar 

  • Amozeegar MA, Malekzadeh F, Malik KA (2003) Production of α-amylase by newly isolated moderate halophile Halobacillus sp. strain MA-2. J Microbiol Met 52:353–359

    Article  Google Scholar 

  • Baysal Z, Uyar F, Aytekin C (2003) Solid-state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic, New York, pp 149–154

  • Chellappan S, Jasmin C, Basheer SM, Elyas KK (2006) Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS 10 under solid-state fermentation. Process Biochem 41:956–961

    Article  CAS  Google Scholar 

  • Ellaiah P, Adinarayana K, Bhavani Y, Padjama P, Srinivasulu B (2002) Optimization of process parameters for glucoamylase production under solid-state fermentation by a newly isolated Aspergillus species. Process Biochem 38:615–620

    Article  CAS  Google Scholar 

  • Esakkiraj P, Sankaralingam S, Usha R, Palavesam A, Immanuel G (2011) Solid-state protease production using anchovy waste meal by moderate halophile Serratia proteamaculans AP-CMST isolated from fish intestine. Ann Microbiol 61:749–755

    Article  CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KP, Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 44:269–274

    CAS  Google Scholar 

  • Goes AP, Sheppard JD (1999) Effects of surfactants on α-amylase and protease production in a solid substrate fermentation process. J Chem Technol Biotechnol 74:709–712

    Article  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  PubMed  CAS  Google Scholar 

  • Hagihara H, Igarashi KY, Hayashi K, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ho S (2001) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSMK. Appl Environ Microbiol 67:1744–1750

    Article  PubMed  CAS  Google Scholar 

  • Han B, Kiers JL, Nout RMJ (1999) Solid-substrat fermentation of soybeans with Rhizopus spp. Comparison of discontinuous rotation with stationary bed fermentation. J Biosci Bioeng 88:205–209

    Article  PubMed  CAS  Google Scholar 

  • Haq I, Ashraf H, Qadeer MA, Iqbal J (2005) Pearl millet, a source of alpha amylase production by Bacillus licheniformis. Bioresour Technol 96:1201–1204

    Article  Google Scholar 

  • Kaur S, Vohra RM, Kapoor M, Beg QK, Hoondal GS (2001) Enhanced production and characterization of highly thermostable alkaline protease from Bacillus sp. P-2. World J Microbiol Biotechnol 17:125–129

    Article  CAS  Google Scholar 

  • Krishna C, Chandrasekaran M (1996) Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Microbial Biotechnol 46:106–111

    Article  CAS  Google Scholar 

  • Leighton TJ, Doi RH, Warren RAJ, Kelln RA (1973) The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J Mol Biol 76:103–122

    Article  PubMed  CAS  Google Scholar 

  • Mahanta N, Gupta A, Khare SK (2008) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol 99:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Merheb Carolina W, Hamilton C, Eleni G, Dasilva R (2007) Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus and its hydrolytic activity on bovine casein. Food Chem 104:127–131

    Article  Google Scholar 

  • Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: charecterization and application of enzyme in detergent formulation. Biochem Eng J 39:353–361

    Article  CAS  Google Scholar 

  • Narang S, Satyanarayana T (2001) Thermostable α-amylase production by an extreme thermophile Bacillus thermoleovorans. Lett Appl Microbiol 32:31–35

    Article  PubMed  CAS  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000a) New developments in solid-state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000b) Biotechnological potential of coffee pulp and coffee husk for bioprocess. Biochem Eng J 6:153–162

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenbergh L, Mohan R (2000c) Biotechnological potential of agro-industrial residues II: Cassava bagasse. Bioresour Technol 74:81–87

    Article  CAS  Google Scholar 

  • Prakasham RS, Subba Rao CH, Sarma PN (2006) Gren gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour Technol 97:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Rama R, Srivastava SK (1995) Effect of various carbon subtrates on α-amylase production from Bacillus species. J Microb Biotechnol 10:76–82

    Google Scholar 

  • Ramachandran S, Patel AK, Nampoothiri KM, Chandran S, Szakacs G, Soccol CR, Pandey A (2004) Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol 47:309–317

    Article  CAS  Google Scholar 

  • Rodriguez Couto S, Angeles Sanroman A (2006) Application of solid-state fermentation to food industry: a review. J Food Eng 769:291–302

    Article  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65:530–537

    Article  PubMed  CAS  Google Scholar 

  • Sodhi HK, Sharma KJ, Gupta K, Soni SK (2005) Production of a thermostable α-amylase and protease from Bacillus sp. PS-7 by solid-state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem 40:525–534

    Article  CAS  Google Scholar 

  • Tanyildizi MS, Özer D, Elibol M (2007) Production of bacterial α-amylase by Bacillus amyloliquefaciens under solid-state fermentation. Biochem Eng J 37:294–297

    Article  CAS  Google Scholar 

  • Uyar F, Baysal Z (2004) Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid-state fermentation. Process Biochem 39:1893–1898

    Article  CAS  Google Scholar 

  • Uyar F, Baysal Z, Dogru M (2003) Purification and some characterization of an extracellular α-amylase from a thermotolerant Bacillus subtilis. Ann Microbiol 53:315–322

    CAS  Google Scholar 

  • Xu H, Sun L, Zhao D, Zhang B, Shi Y, Wu Y (2008) Production of α-amylase by Aspergillus oryzae As 3951 in solid-state fermentation using spent brewing grains as substrate. J Sci Food Agric 88:529–535

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Dicle University Scientific Research Foundation (DUBAP-06-FF-102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel Tolan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karataş, H., Uyar, F., Tolan, V. et al. Optimization and enhanced production of α-amylase and protease by a newly isolated Bacillus licheniformis ZB-05 under solid-state fermentation. Ann Microbiol 63, 45–52 (2013). https://doi.org/10.1007/s13213-012-0443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0443-6

Keywords

Navigation