Skip to main content
Log in

Preconcentration-enhanced immunosensing for whole human cancer cell lysate based on a nanofluidic preconcentrator

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Sample preconcentration is an important step that increases the accuracy of subsequent detection, especially for samples with extremely low concentrations. Due to the overlap of electrical double layers in a nanofluidic channel, the concentration polarization effect can be generated by applying an electric field. A nonlinear electrokinetic flow is induced, which results in the fast accumulation of proteins in front of the induced ionic depletion zone, the so-called exclusion- enrichment effect. In this way, a protein sample can be driven by electroosmotic flow and accumulated at a specific location. In the present study, a nanofluidic preconcentrator fabricated with the help of junction gap electric breakdown was integrated with microelectrodes for immunoassay. The preconcentration chip for proteins was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. Human galectin-1 proteins from the cell lysate of T24 cells were concentrated and immunoassayed in the proposed microchip. The capability of the proposed microchip for concentrating multiple proteins from cell lysates and immunoassays after preconcentration was demonstrated. Immunosensing was evaluated by measurements of both fluorescence intensities and impedance, which proved the enhancement of preconcentration for immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  2. Duan, C., Wang, W. & Xie, Q. Review article: Fabrication of nanofluidic devices. Biomicrofluidics 7, 026501 (2013).

    Article  Google Scholar 

  3. Wang, Y.C., Stevens, A.L. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  4. Mao, P. & Han, J. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5, 837–844 (2005).

    Article  CAS  Google Scholar 

  5. Lee, J.H., Song, Y.-A. & Han, J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8, 596–601 (2008).

    Article  CAS  Google Scholar 

  6. Sung, J.K. & Han, J. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal. Chem. 80, 3507–3511 (2008).

    Article  Google Scholar 

  7. Wu, D. & Steckl, A.J. High speed nanofluidic protein accumulator. Lab Chip 9, 1890–1896 (2009).

    Article  CAS  Google Scholar 

  8. Jen, C.-P., Amstislavskaya, T.G., Kuo, C.-C. & Chen, Y.-H. Protein preconcentration using nanofractures generated by nanoparticle-assisted electric breakdown at junction gaps. PLoS One 9, e102050 (2014).

    Article  Google Scholar 

  9. Chiang, P.-J., Kuo, C.-C., Zamay, T.N., Zamay, A.S. & Jen, C.-P. Quantitative evaluation of the depletion efficiency of nanofractures generated by nanoparticle-assisted junction gap breakdown for protein concentration. Microelectron. Eng. 115, 39–45 (2014).

    Article  CAS  Google Scholar 

  10. Jeong, H.L., Chung, S., Sung, J.K. & Han, J. Poly (dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal. Chem. 79, 6868–6873 (2007).

    Article  Google Scholar 

  11. Kim, S.M., Burns, M.A. & Hasselbrink, E.F. Electrokinetic protein preconcentration using a simple glass/ poly (dimethylsiloxane) microfluidic chip. Anal. Chem. 78, 4779–4785 (2006).

    Article  CAS  Google Scholar 

  12. Liu, V., Song, Y.-A. & Han, J. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip. Lab Chip 10, 1485–1490 (2010).

    Article  CAS  Google Scholar 

  13. Lee, J.H. & Han, J. Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator. Microfluid. Nanofluidics 9, 973–979 (2010).

    Article  CAS  Google Scholar 

  14. Ko, S.H. et al. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12, 4472 (2012).

    Article  CAS  Google Scholar 

  15. Chung, M., Kim, D. & Herr, A.E. Microchamber western blotting using poly-l-lysine conjugated polyacrylamide gel for blotting of sodium dodecyl sulfate coated proteins. Anal. Chem. 85, 7753–7761 (2013).

    Article  CAS  Google Scholar 

  16. Banh, A. et al. Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res. 71, 4423–4431 (2011).

    Article  CAS  Google Scholar 

  17. Liu, F.-T. & Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  Google Scholar 

  18. Rabinovich, G.A. Galectin-1 as a potential cancer target. Br. J. Cancer 92, 1188–1192 (2005).

    Article  CAS  Google Scholar 

  19. Van den Brûle, F., Califice, S. & Castronovo, V. Expression of galectins in cancer: a critical review. Glycoconj. J. 19, 537–542 (2004).

    Article  Google Scholar 

  20. Scott, K. & Weinberg, C. Galectin-1: a bifunctional regulator of cellular proliferation. Glycoconj. J. 19, 467–477 (2004).

    Article  Google Scholar 

  21. He, J. & Baum, L.G. Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol. 417, 247–256 (2006).

    Article  CAS  Google Scholar 

  22. Hsu, D.K. & Liu, F.-T. Regulation of cellular homeostasis by galectins. Glycoconj. J. 19, 507–515 (2004).

    Article  Google Scholar 

  23. Thijssen, V.L.J.L. et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. U.S.A. 103, 15975–15980 (2006).

    Article  CAS  Google Scholar 

  24. Yang, R.Y. & Liu, F.T. Galectins in cell growth and apoptosis. Cell. Mol. Life Sci. 60, 267–276 (2003).

    Article  CAS  Google Scholar 

  25. Barrow, H., Rhodes, J.M. & Yu, L.-G. The role of galectins in colorectal cancer progression. Int. J. Cancer 129, 1–8 (2011).

    Article  CAS  Google Scholar 

  26. Camby, I. et al. Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J. Neuropathol. Exp. Neurol. 61, 585–596 (2002).

    Article  CAS  Google Scholar 

  27. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001).

    Article  CAS  Google Scholar 

  28. Thrasher, J.B. & Crawford, E.D. Current management of invasive and metastatic transitional cell carcinoma of the bladder. J. Urol. 149, 957–972 (1993).

    CAS  Google Scholar 

  29. Stein, J.P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    CAS  Google Scholar 

  30. Cortessis, V.K., Siegmund, K., Xue, S., Ross, R.K. & Yu, M.C. A case-control study of cyclin D1 CCND1 870A—>G polymorphism and bladder cancer. Carcinogenesis 24, 1645–1650 (2003).

    Article  CAS  Google Scholar 

  31. Peng, C.-C. et al. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. J. Ethnopharmacol. 109, 93–103 (2007).

    Article  Google Scholar 

  32. Cindolo, L. et al. galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas. Int. J. Cancer 84, 39–43 (1999).

    CAS  Google Scholar 

  33. Danguy, A., Camby, I. & Kiss, R. Galectins and cancer. Biochim. Biophys. Acta 1572, 285–293 (2002).

    Article  CAS  Google Scholar 

  34. Memon, A.A., Chang, J.W., Oh, B.R. & Yoo, Y.J. Identification of differentially expressed proteins during human urinary bladder cancer progression. Cancer Detect. Prev. 29, 249–255 (2005).

    Article  CAS  Google Scholar 

  35. Memon, A.A. et al. Down-Regulation of S100C Is Associated with Bladder Cancer Progression and Poor Survival. Clin. Cancer Res. 11, 606–611 (2005).

    CAS  Google Scholar 

  36. Lee, J.H., Chung, S., Kim, S.J. & Han, J. Poly (dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal. Chem. 79, 6868–6873 (2007).

    Article  CAS  Google Scholar 

  37. Dill, K.A. & Shortle, D. Denatured States of Proteins. Annu. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  38. Jen, C.-P., Amstislavskaya, T.G., Chen, K.-F. & Chen, Y.-H. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles. PLoS One 10, e0126641 (2015).

    Article  Google Scholar 

  39. Chuang, C.H. et al. Miniaturization of immunoassay by using a novel module-level immunosensor with polyaniline-modified nanoprobes that incorporate impedance sensing and paper-based sampling. Microfluid. Nanofluidics 16, 869–877 (2014).

    Article  CAS  Google Scholar 

  40. Chuang, C.-H. et al. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations. Lab Chip 15, 3056–3064 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hung Chen or Chun-Ping Jen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H.F., Amstislavskaya, T.G., Chen, PH. et al. Preconcentration-enhanced immunosensing for whole human cancer cell lysate based on a nanofluidic preconcentrator. BioChip J 10, 159–166 (2016). https://doi.org/10.1007/s13206-016-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0203-y

Keywords

Navigation