Skip to main content
Log in

Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Herbaspirillum seropedicae is an endophytic diazotrophic bacterium. We investigated the gene expression of Zea mays roots inoculated with the plant growth-promoting bacterium H. seropedicae. Maize seedlings (cv. DKB240) were inoculated with H. seropedicae strain SmR1, grown in sterilized sand and collected 1, 4, 7 and 10 days after inoculation (DAI). The study was repeated three times and it was found that the number of lateral roots was significantly higher in inoculated seedlings than in controls at 7 and 10 DAI. The transcript levels of 10 maize genes (actin1, chalcone synthase, ent-copalyl diphosphate synthase, ent-kaurene oxidase, gibberellin 20 oxidase 4, auxin transporter-like protein 1, mitogen-activated protein kinase 5, respiratory burst oxidase proteins A, B and C) were quantified by qRT-PCR. A significant increase of transcript levels was observed for ent-kaurene oxidase and for respiratory burst oxidase protein C in inoculated seedlings compared to controls at 4 DAI. It was concluded that at the beginning of the interaction, the presence of Herbaspirillum seropedicae SmR1 in maize roots modulates transiently the expression of one gene involved in gibberellin biosynthesis pathway and another gene of NADPH oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PGPB:

Plant growth-promoting bacteria

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

ROS:

Reactive oxygen species

DAI:

Days after inoculation

References

  • Baldani VLD, Baldani JI, Olivares F, Dobereiner J (1992) Identification and ecology of Herbaspirillum-seropedicae and the closely related Pseudomonas-Rubrisubalbicans. Symbiosis 13(1–3):65–73

    Google Scholar 

  • Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, Hoste B, Kersters K, Hartmann A, Gillis M, Dobereiner J (1996) Emended description of Herbaspirillum; inclusion of Pseudomonas rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb nov; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int Syst Bacteriol 46(3):802–810

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30(5–6):485–491

    Article  Google Scholar 

  • Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12(8):2233–2244. doi:10.1111/j.1462-2920.2010.02187.x

    PubMed  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth–promoting bacterium Azospirillum promotes plant growth—a critical assessment vol 108. Adv Agron. doi:10.1016/S0065-2113(10)08002-8

    Google Scholar 

  • Botta AL, Santacecilia A, Ercole C, Cacchio P, Gallo MD (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol. doi:10.1016/j.nbt.2013.01.001

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  Google Scholar 

  • Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA, Pedrosa FO, Souza EM, Wassem R (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356(1–2):113–125. doi:10.1007/s11104-011-1044-z

    Article  CAS  Google Scholar 

  • Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RCC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366(1–2):119–132

    Article  CAS  Google Scholar 

  • Cangahuala-Inocente GC, Amaral FP, Faleiro AC, Huergo L, Arisi ACM (2013) Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. Eur J Soil Biol 58:45–50. doi:10.1016/j.ejsobi.2013.06.002

    Article  CAS  Google Scholar 

  • Chubatsu LS, Monteiro RA, de Souza EM, Schuler de Oliveira MA, Yates MG, Wassem R, Bonatto AC, Huergo LF, Reynaud Steffens MB, Rigo LU, FdO P (2012) Nitrogen fixation control in Herbaspirillum seropedicae. Plant Soil 356(1–2):197–207. doi:10.1007/s11104-011-0819-6

    Article  CAS  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175. doi:10.1023/a:1024106605806

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149. doi:10.1080/713610853

    Article  CAS  Google Scholar 

  • El-Komy HM, Hamdia MA, El-Baki GKA (2003) Nitrate reductase in wheat plants grown under water stress and inoculated with Azospirillum spp. Biol Plant 46(2):281–287. doi:10.1023/a:1022819114860

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Rosales EP, Vazquez SC, Benavides MP (2012) Cadmium modulates NADPH oxidase activity and expression in sunflower leaves. Biol Plant 56(1):167–171

    Article  CAS  Google Scholar 

  • Gutierrez-Luna FM, Lopez-Bucio J, Altamirano-Hernandez J, Valencia-Cantero E, de la Cruz HR, Macias-Rodriguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83. doi:10.1007/s13199-010-0066-2

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245(1):83–93. doi:10.1023/a:1020663916259

    Article  CAS  Google Scholar 

  • Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44(2):121–129. doi:10.1016/s0167-7012(00)00241-4

    Article  PubMed  CAS  Google Scholar 

  • Hermes VS, Dallasta P, Amaral FP, Anacleto KB, Arisi ACM (2013) Apocynin induced nitric oxide is involved in the regulation of transcript levels of genes related to oxidative stress and glutathione synthesis in Zea mays leaves. Biol Plant 57(4):620–626. doi:10.1007/s10535-013-0353-x

    Article  CAS  Google Scholar 

  • Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. vol 347. Circular Univ. of Calif. Agric. Exp. Station, Berkley

    Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331(1–2):413–425. doi:10.1007/s11104-009-0262-0

    Article  CAS  Google Scholar 

  • Jha B, Thakur MC, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45(1):62–72. doi:10.1016/j.ejsobi.2008.06.007

    Article  CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56(2):77–86. doi:10.1007/s13199-012-0162-6

    Article  CAS  Google Scholar 

  • Klassen G, Pedrosa FO, Souza EM, Funayama S, Rigo LU (1997) Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can J Microbiol 43(9):887–891

    Article  CAS  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31(5):587–601. doi:10.1111/j.1365-3040.2007.01748.x

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60(11):3221–3238. doi:10.1093/jxb/erp157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lo C, Coolbaugh RC, Nicholson RL (2002) Molecular characterization and in silico expression analysis of a chalcone synthase gene family in Sorghum bicolor. Physiol Mol Plant Pathol 61(3):179–188. doi:10.1006/pmpp.2002.0428

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J Gen Mol Microbiol 86(1):1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14(3):589–597. doi:10.1105/tpc.010354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62(10):3459–3466. doi:10.1093/jxb/err019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mello CS, Hermes VS, Guerra MP, Arisi ACM (2012) Sodium nitroprusside modulates gene expression involved in glutathione synthesis in Zea mays leaves. Biol Plant 56(2):383–388. doi:10.1007/s10535-012-0104-4

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361(1–2):301–306. doi:10.1007/s11104-012-1212-9

    Article  CAS  Google Scholar 

  • Monteiro RA, Schmidt MA, de Baura VA, Balsanelli E, Wassem R, Yates MG, Randi MAF, Pedrosa FO, de Souza EM (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31(4):932–937. doi:10.1590/s1415-47572008005000007

    Article  Google Scholar 

  • Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356(1–2):175–196. doi:10.1007/s11104-012-1125-7

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45(1):106–113. doi:10.1016/j.ejsobi.2008.09.004

    Article  CAS  Google Scholar 

  • Pedraza RO, Bellone CH, Carrizo de Bellone S, Fernandes Boa Sorte PM, dos Santos Teixeira KR (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45(1):36–43. doi:10.1016/j.ejsobi.2008.09.007

    Article  CAS  Google Scholar 

  • Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae Strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7(5):e1002064. doi:10.1371/journal.pgen.1002064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poupin MJ, Timmermann T, Vega A, Zuniga A, Gonzalez B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS ONE 8(7):e69435. doi:10.1371/journal.pone.0069435

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443. doi:10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  • Ribaudo CM, Rondanini DP, Cura JA, Fraschina AA (2001) Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions. Biol Plant 44(4):631–634. doi:10.1023/a:1013779712106

    Article  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Divan Baldani VL, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N-2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261. doi:10.1007/s11104-007-9476-1

    Article  CAS  Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45(1):39–47. doi:10.1016/s0168-6496(03)00108-9

    Article  PubMed  CAS  Google Scholar 

  • Samajova O, Plihal O, Al-Yousif M, Hirt H, Samaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31(1):118–128. doi:10.1016/j.biotechadv.2011.12.002

    Article  PubMed  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767. doi:10.1093/aob/mct048

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  PubMed  CAS  Google Scholar 

  • Schwachtje J, Karojet S, Thormaehlen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Koehl K, van Dongen JT (2011) A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS ONE 6(12):e29382. doi:10.1371/journal.pone.0029382

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM, Buell CR, de Leon N, Kaeppler SM (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8(4):e61005. doi:10.1371/journal.pone.0061005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Doering J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25(1):28–36. doi:10.1094/mpmi-08-11-0204

    Article  PubMed  CAS  Google Scholar 

  • Song J, Guo B, Song F, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482(1–2):34–42. doi:10.1016/j.gene.2011.05.008

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438. doi:10.1101/cshperspect.a001438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506. doi:10.1111/j.1574-6976.2000.tb00552.x

    Article  PubMed  CAS  Google Scholar 

  • Sujeeth N, Kini RK, Shailasree S, Wallaart E, Shetty SH, Hille J (2012) Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola. Acta Physiol Plant 34(2):779–791. doi:10.1007/s11738-011-0879-5

    Article  CAS  Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Mueller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77(6):2180–2183. doi:10.1128/aem.02071-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vargas L, Gurjao de Carvalho TL, Gomes Ferreira PC, Divan Baldani VL, Baldani JI, Hemerly AS (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356(1–2):127–137. doi:10.1007/s11104-012-1274-8

    Article  CAS  Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540. doi:10.1104/pp. 110.161570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moenne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356(1–2):151–163. doi:10.1007/s11104-011-0960-2

    Article  CAS  Google Scholar 

  • Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21(4):373–383. doi:10.1046/j.1365-3040.1998.00278.x

    Article  CAS  Google Scholar 

  • Yang T, Chen Y, Wang X-X, Dai C-C (2013) Plant symbionts: keys to the phytosphere. Symbiosis 59(1):1–14. doi:10.1007/s13199-012-0190-2

    Article  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang CH, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7(8):611–621. doi:10.1016/s1074-5521(00)00007-7

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan MP, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141(2):475–487. doi:10.1104/pp. 105.075416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot 61(15):4399–4411. doi:10.1093/jxb/erq243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by National Institute of Science and Technology–Biological Nitrogen Fixation, INCT FBN, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, CNPq, Ministry of Science and Technology, Brazil. FPA was recipient of fellowship from INCT FBN, CAPES, Ministry of Education, Brazil. VSH was recipient of PhD fellowship from CNPq. ACMA is recipient of research fellowship (PQ-2) from CNPq. We would like to express our gratitude to Dr. Fábio de Oliveira Pedrosa, Universidade Federal do Paraná, for providing H. seropedicae strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Maisonnave Arisi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Amaral, F.P., Bueno, J.C.F., Hermes, V.S. et al. Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae . Symbiosis 62, 41–50 (2014). https://doi.org/10.1007/s13199-014-0270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0270-6

Keywords

Navigation