Skip to main content
Log in

Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Brassica vegetables, which include broccoli, kale, cauliflower, and Brussel sprouts, are known for their high glucosinolate content. Glucosinolates and their derived forms namely isothiocyanates are of special interest in the pharmaceutical and food industries due to their antimicrobial, neuroprotective, and anticarcinogenic properties. These compounds are water soluble and heat-sensitive and have been proved to be heavily lost during thermal processing. In addition, previous studies suggested that novel non-thermal technologies such as high pressure processing, pulsed electric fields, or ultraviolet irradiation can affect the glucosinolate content of cruciferous vegetables. The objective of this paper was to review current knowledge about the effects of both thermal and non-thermal processing technologies on the content of glucosinolates and their derived forms in brassica vegetables. This paper also highlights the importance of the incorporation of brassica vegetables into our diet for their health-promoting properties beyond their anticarcinogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data accessed from the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) available at http://www.fao.org/faostat/en/

Similar content being viewed by others

Abbreviations

HPP:

High pressure processing

UV:

Ultraviolet

IPL:

Intense pulsed light

PEF:

Pulsed electric field

References

  • Aguiló-Aguayo I, Suarez M, Plaza L, Hossain MB, Brunton N, Lyng JG, Rai DK (2015) Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk. J Sci Food Agric 95:1868–1875

    Article  CAS  PubMed  Google Scholar 

  • Aguiló-Aguayo I, Gangopadhyay N, Lyng J, Brunton N, Rai D (2017) Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. Innov Food Sci Emerg 42:49–55

    Article  CAS  Google Scholar 

  • Alvarez-Jubete L, Valverde J, Patras A, Mullen AM, Marcos B (2014) Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol 7:682–692

    Article  CAS  Google Scholar 

  • Angeloni C, Hrelia S, Malaguti M (2017) Neuroprotective effects of glucosinolates. In: Mérillon JM, Ramawat KG (eds) Glucosinolates. Springer, Basel, pp 275–299

    Chapter  Google Scholar 

  • Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, Travier N, Olsen A, Tjønneland A, Overvad K (2016) Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr 103:454–464

    Article  CAS  PubMed  Google Scholar 

  • Bhandari SR, Kwak JH (2015) Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228–1243

    Article  CAS  PubMed  Google Scholar 

  • Blok Frandsen H, Ejdrup Markedal K, Martín-Belloso O, Sánchez-Vega R, Soliva-Fortuny R, Sørensen H, Sørensen S, Sørensen JC (2014) Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Pol J Food Nutr Sci 64:17–25

    Google Scholar 

  • Bongoni R, Verkerk R, Steenbekkers B, Dekker M, Stieger M (2014) Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance. Plant Food Hum Nutr 69:228–234

    Article  CAS  Google Scholar 

  • Capuano E, Dekker M, Verkerk R, Oliviero T (2017) Food as pharma? The case of glucosinolates. Curr Pharm Des 23:2697–2721

    Article  CAS  PubMed  Google Scholar 

  • Cieślik E, Leszczyńska T, Filipiak-Florkiewicz A, Sikora E, Pisulewski PM (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981

    Article  CAS  Google Scholar 

  • Cohen JE (2003) Human population: the next half a century. Science 302:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Conde-Rioll M, Gajate C, Fernández JJ, Villa-Pulgarin JA, Napolitano JG, Norte M, Mollinedo F (2017) Antitumor activity of Lepidium latifolium and identification of the epithionitrile 1-cyano-2, 3-epithiopropane as its major active component. Mol Carcinogen 57:1–14

    Google Scholar 

  • Cruz RM, Godinho AI, Aslan D, Koçak NF, Vieira MC (2016) Modeling the kinetics of peroxidase inactivation, colour and texture changes of Portuguese cabbage (Brassica oleracea L. var. costata DC) during UV-C light and heat blanching. Int J Food Stud 5:180–192

    Article  Google Scholar 

  • Darré M, Valerga L, Araque LCO, Lemoine ML, Demkura PV, Vicente AR, Concellón A (2017) Role of UV-B irradiation dose and intensity on color retention and antioxidant elicitation in broccoli florets (Brassica oleracea var. Italica). Postharvest Biol Technol 128:76–82

    Article  CAS  Google Scholar 

  • Deng Q, Zinoviadou KG, Galanakis CM, Orlien V, Grimi N, Vorobiev E, Lebovka N, Barba FJ (2015) The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7:357–381

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) The Food and Agriculture Organization Corporate Statistical Database. http://www.fao.org/faostat/en/#home

  • Florkiewicz A, Ciska E, Filipiak-Florkiewicz A, Topolska K (2017) Comparison of sous-vide methods and traditional hydrothermal treatment on GLS content in Brassica vegetables. Eur Food Res Technol 9:1–11

    Google Scholar 

  • Formica-Oliveira AC, Martínez-Hernández GB, Díaz-López V, Artés F, Artés-Hernández F (2017) Use of postharvest UV-B and UV-C radiation treatments to revalorize broccoli byproducts and edible florets. Innov Food Sci Emerg 43:77–83

    Article  CAS  Google Scholar 

  • Francisco M, Tortosa M, Martínez-Ballesta M, Velasco P, García-Viguera C, Moreno D (2017) Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann Appl Biol 170:273–285

    Article  CAS  Google Scholar 

  • Giambanelli E, Verkerk R, Fogliano V, Capuano E, D’Antuono L, Oliviero T (2015) Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients. RSC Adv 5:66894–66900

    Article  CAS  Google Scholar 

  • Hanschen FS, Schreiner M (2017) Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Front Plant Sci 8:1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanschen FS, Kaufmann M, Kupke F, Hackl T, Kroh LW, Rohn S, Schreiner M (2018) Brassica vegetables as sources of epithionitriles: novel secondary products formed during cooking. Food Chem 245:564–569

    Article  CAS  PubMed  Google Scholar 

  • Hinds L, Kenny O, Hossain M, Walsh D, Sheehy E, Evans P, Gaffney M, Rai D (2017) Evaluating the antibacterial properties of polyacetylene and glucosinolate compounds with further identification of their presence within various carrot (Daucus carota) and Broccoli (Brassica oleracea) cultivars using high-performance liquid chromatography with a diode array detector and ultra performance liquid chromatography–tandem mass spectrometry analyses. J Agric Food Chem 65:7186–7191

    Article  CAS  PubMed  Google Scholar 

  • Jeffery EH, Araya M (2009) Physiological effects of broccoli consumption. Phytochem Rev 8:283–298

    Article  CAS  Google Scholar 

  • Kapusta-Duch J, Kusznierewicz B, Leszczyńska T, Borczak B (2016) Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J Funct Food 23:412–422

    Article  CAS  Google Scholar 

  • Kellingray L, Tapp HS, Saha S, Doleman JF, Narbad A, Mithen RF (2017) Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: a randomised crossover study. Mol Nutr Food Res 61:1600992

    Article  CAS  PubMed Central  Google Scholar 

  • Lim W, Harrison MA (2016) Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control 66:166–173

    Article  CAS  Google Scholar 

  • Lin T, Zirpoli GR, McCann SE, Moysich KB, Ambrosone CB, Tang L (2017) Trends in cruciferous vegetable consumption and associations with breast cancer risk: a case-control study. Curr Dev Nutr 1:e000448

    Article  PubMed  PubMed Central  Google Scholar 

  • Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M, Zrenner R (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53:1546–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori N, Shimazu T, Sasazuki S, Nozue M, Mutoh M, Sawada N, Iwasaki M, Yamaji T, Inoue M, Takachi R (2017) Cruciferous vegetable intake is inversely associated with lung cancer risk among current nonsmoking men in the Japan Public Health Center Study. J Nutr 147:841–849

    Article  CAS  PubMed  Google Scholar 

  • Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW, Krumbein A (2014) Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica). J Agric Food Chem 62:4054–4062

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2016) Pulsed electric fields effects on health-related compounds and antioxidant capacity of tomato juice. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 1–14

    Google Scholar 

  • Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29

    Article  CAS  Google Scholar 

  • Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F (2017) Glucosinolates in food. In: Mérillon JM, Ramawat KG (eds) Glucosinolates. Springer, Basel, pp 87–132

    Chapter  Google Scholar 

  • Puértolas E, Saldaña G, Raso J (2016) Pulsed electric field treatment for fruit and vegetable processing. In: Miklavcic D (ed) Handbook of electroporation. Springer, Cham, pp 1–21

    Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Pua EC, Douglas CJ (eds) Brassica. Springer, Berlin, pp 3–11

    Chapter  Google Scholar 

  • Rybarczyk-Plonska A, Hagen SF, Borge GIA, Bengtsson GB, Hansen MK, Wold AB (2016) Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biol Technol 116:16–25

    Article  CAS  Google Scholar 

  • Sahni S, Kiel DP, Hannan MT (2016) Vitamin C and bone health. In: Weaver C, Dary R, Bischoff-Ferrari H (eds) Nutritional influences on bone health. Springer, Cham, pp 87–98

    Chapter  Google Scholar 

  • Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg 29:70–77

    Article  CAS  Google Scholar 

  • Sarvan I, Verkerk R, van Boekel M, Dekker M (2014) Comparison of the degradation and leaching kinetics of glucosinolates during processing of four Brassicaceae (broccoli, red cabbage, white cabbage, Brussels sprouts). Innov Food Sci Emerg 25:58–66

    Article  CAS  Google Scholar 

  • Soares A, Carrascosa C, Raposo A (2017) Influence of different cooking methods on the concentration of glucosinolates and vitamin C in broccoli. Food Bioprocess Technol 10:1–25

    Article  CAS  Google Scholar 

  • Tiwari U, Sheehy E, Rai D, Gaffney M, Evans P, Cummins E (2015) Quantitative human exposure model to assess the level of glucosinolates upon thermal processing of cruciferous vegetables. LWT Food Sci Technol 63:253–261

    Article  CAS  Google Scholar 

  • Topcu Y, Dogan A, Kasimoglu Z, Sahin-Nadeem H, Polat E, Erkan M (2015) The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiol Biochem 93:56–65

    Article  CAS  PubMed  Google Scholar 

  • Urbain P, Valverde J, Jakobsen J (2016) Impact on vitamin D2, vitamin D4 and Agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Food Hum Nutr 71:314–321

    Article  CAS  Google Scholar 

  • Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323

    Article  CAS  PubMed  Google Scholar 

  • Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T (2008) Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem 109:595–605

    Article  CAS  Google Scholar 

  • Wagner AE, Terschluesen AM, Rimbach G (2013) Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. Oxidative Med Cell Longev 2013:964539

    Article  CAS  Google Scholar 

  • Wang J, Barba FJ, Frandsen HB, Sørensen S, Olsen K, Sørensen JC, Orlien V (2016) The impact of high pressure on glucosinolate profile and myrosinase activity in seedlings from Brussels sprouts. Innov Food Sci Emerg 38:342–348

    Article  CAS  Google Scholar 

  • Watson GW, Beaver LM, Williams DE, Dashwood RH, Ho E (2013) Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J 15:951–961

    Article  CAS  Google Scholar 

  • Westphal A, Riedl KM, Cooperstone JL, Kamat S, Balasubramaniam V, Schwartz SJ, Böhm V (2017) High-pressure processing of broccoli sprouts: influence on bioactivation of glucosinolates to isothiocyanates. J Agric Food Chem 65:8578–8585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CERCA Programme and the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (FI-DGR-2015-0004). T. Lafarga is in receipt of a Juan de la Cierva contract awarded by the Spanish Ministry of Economy, Industry, and Competitiveness (FJCI-2016-29541). I. Aguiló-Aguayo thanks the National Programme for the Promotion of Talent and its Employability of the Spanish Ministry of Economy, Industry and Competitiveness and to the European Social Fund for the Postdoctoral Senior Grant Ramon y Cajal (RYC-2016-19949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Aguiló-Aguayo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafarga, T., Bobo, G., Viñas, I. et al. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. J Food Sci Technol 55, 1973–1981 (2018). https://doi.org/10.1007/s13197-018-3153-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3153-7

Keywords

Navigation