Skip to main content
Log in

Recovering the evolutionary history of Africa’s most diverse viper genus: morphological and molecular phylogeny of Bitis (Reptilia: Squamata: Viperidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Assessing evolutionary relationships among wide-ranging species can be particularly beneficial to our understanding of speciation patterns and biogeography of taxa, with broad implications for conservation and applications for human health. Integrative phylogenetic analyses that incorporate multiple independent datasets (e.g., DNA, protein, phenotype) can resolve many problematic issues in systematics such as cryptic diversity and incongruence between datasets. Vipers in the genus Bitis are widely distributed throughout much of sub-Saharan Africa, filling a variety of ecological niches and presenting an important public health problem. However, evolutionary relationships among this medically and ecologically important genus have not been fully resolved due to inadequate taxon sampling and lack of informative characters. Here, we conduct the first phylogenetic study incorporating complete sampling of known species within the genus Bitis. Using morphological, molecular, and combined approaches under multiple criteria, we recovered many of the species groups detected by previous investigators, further validating four currently recognized subgenera. Bitis arietans and Bitis worthingtoni appear to be early-diverging, monotypic lineages, while the “big Bitis” group and the small southern African species form distinct clades. Although our study provides additional information regarding the interspecific relationships within Bitis, the placement of Bitis albanica, Bitis heraldica, and Bitis inornata remains problematic. This study enhances our understanding of the evolutionary history of species within the genus Bitis incorporating a combined evidence approach to phylogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashe, J. S., & Marx, H. (1988). Phylogeny of the viperine snakes (Viperinae): part II. Cladistic analysis and major lineages. Fieldiana Zoology (New Series), 52, 1–23.

    Google Scholar 

  • Barlow, A., Grail, W., de Bruyn, M., & Wüster, W. (2012). Anonymous nuclear markers for the African adders (Serpentes: Viperidae: Bitis). Conservation Genetic Resources, 4, 967–969.

    Article  Google Scholar 

  • Barlow, A., Baker, K., Hendry, C. R., Peppin, L., Phelps, T., Tolley, K. A., Wüster, C. E., & Wüster, W. (2013). Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa. Molecular Ecology, 22, 1134–1157.

    Article  PubMed  Google Scholar 

  • Böhme, W. (1977). Eine neue Art der Gattung Bitis (Serpentes: Viperidae) aus Äthiopien. Monitore zoologico italiano, 9, 59–68.

    Google Scholar 

  • Branch, W. R. (1999). Dwarf adders of the Bitis cornuta-inornata complex (Serpentes: Viperidae) in southern Africa. Kaupia, 8, 39–63.

    Google Scholar 

  • Breidenbach, C. H. (1990). Thermal cues influence strikes in pitless vipers. Journal of Herpetology, 24, 448–450.

    Article  Google Scholar 

  • Broadley, D. G., & Cock, E. V. (1975). Snakes of Rhodesia. Salisbury: Longman Rhodesia.

    Google Scholar 

  • Calvete, J. J., Escolano, J., & Sanz, L. (2007). Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. Journal of Proteome Research, 6, 2732–2745.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J. A., & Frost, D. R. (1993). Anguid lizards of the genus Abronia: revisionary notes, descriptions of four new species, a phylogenetic analysis, and key. Bulletin of the American Museum of Natural History, 216, 1–121.

    Google Scholar 

  • Carrasco, P. A., Mattoni, C. I., Leynaud, G. C., & Scrocchi, G. J. (2012). Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zoologica Scripta, 41, 109–124.

    Article  Google Scholar 

  • Castoe, T. A., & Parkinson, C. L. (2006). Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution, 39, 91–110.

    Article  PubMed  Google Scholar 

  • Chang, V. A., & Smith, E. N. (2003). FastMorphologyGFC version 1.0. http://www.uta.edu/faculty/ensmith/fastmorphologygfc. Accessed 1 Apr 2013

  • Chippaux, J.-P. (2006). Snake venoms and envenomations. Malabar: Krieger.

    Google Scholar 

  • Dowling, H. G. (1951). A proposed standard system of counting ventrals in snakes. British Journal of Herpetology, 1, 97–99.

    Google Scholar 

  • Dragoo, J. W., & Honeycutt, R. L. (1997). Systematics of mustelid-like carnivores. Journal of Mammalogy, 78, 426–9443.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eernisse, D. J., & Kluge, A. G. (1993). Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Molecular Biology and Evolution, 10, 1170–1195.

    CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985a). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Felsenstein, J. (1985b). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fenwick, A. M., Gutberlet, R. L., Jr., Evans, J. A., & Parkinson, C. L. (2009). Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zoological Journal of the Linnean Society, 156, 617–640.

    Article  Google Scholar 

  • Fenwick, A. M., Greene, H. W., & Parkinson, C. L. (2012). The serpent and the egg: unidirectional evolution of reproductive mode in vipers? Journal of Zoological Systematics and Evolutionary Research, 50, 59–66.

    Article  Google Scholar 

  • FitzSimons, V. F. M. (1962). Snakes of Southern Africa. London: Macdonald.

    Google Scholar 

  • Fry, B. G., Winkel, K. D., Wickramaratna, J. C., Hodgson, W. C., & Wüster, W. (2003). Effectiveness of snake antivenom: species and regional venom variation and its clinical impact. Journal of Toxicology Toxin Review, 22, 23–34.

    Article  CAS  Google Scholar 

  • Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.

    Article  Google Scholar 

  • Groombridge, B. (1980). A phyletic analysis of viperine snakes. PhD dissertation. City of London Polytechnic.

  • Groombridge, B. (1986). Phyletic relationships among viperine snakes. In Z. Roček (Ed.), Studies in herpetology; Proceedings of the 3rd Ord. General meeting of the Societas Europaea Herpetologica (pp. 219–222). Prague: Charles University.

    Google Scholar 

  • Gutberlet, R. L., Jr., & Harvey, M. B. (2002). Phylogenetic relationships of New World pitvipers as inferred from anatomical evidence. In G. W. Schuett, M. Höggren, M. E. Douglas, & H. W. Greene (Eds.), Biology of the vipers (pp. 51–68). Eagle Mountain: Eagle Mountain Publishing.

    Google Scholar 

  • Herrmann, H. W., & Joger, U. (1995). Molecular data on the phylogeny of African vipers—preliminary results. In A. Llorente, A. Montori, X. Santos, & M. A. Carretero (Eds.), Scientia herpetologica (pp. 92–97). Salamanca: Asociación Herpetológica Española.

  • Herrmann, H. W., & Joger, U. (1997). Evolution of viperine snakes. In R. S. Thorpe, W. Wüster, & A. Malhotra (Eds.), Venomous snakes: ecology, evolution and snakebite (pp. 43–61). Oxford: Clarendon.

    Google Scholar 

  • Herrmann, H.-W., Lenk, P., Joger, U., & Wink, M. (1999). Morphological and molecular phylogenies of viperines: conflicting evidence? Kaupia, 8, 21–30.

    Google Scholar 

  • Jadin, R. C., Smith, E. N., & Campbell, J. A. (2011). Unraveling a tangle of Mexican serpents: a systematic revision of highland pitvipers. Zoological Journal of the Linnean Society, 163, 943–958.

    Article  Google Scholar 

  • Jadin, R. C., Townsend, J. H., Castoe, T. A., & Campbell, J. A. (2012). Cryptic diversity in disjunct populations of Middle American Montane pitvipers: a systematic reassessment of Cerrophidion godmani. Zoologica Scripta, 41, 455–470.

    Article  Google Scholar 

  • Johnson, N. K., Zink, R. M., & Marten, J. A. (1988). Genetic evidence for relationships in the avian family Vireonidae. The Condor, 90, 428–445.

    Article  Google Scholar 

  • Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & de Silva, H. J. (2008). The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Medicine, 5, 1591–1604.

    Article  Google Scholar 

  • Largen, M. J., & Rasmussen, J. B. (1993). Catalogue of the snakes of Ethiopia (Reptilia Serpentes), including identification keys. Tropical Zoology, 6, 313–434.

    Article  Google Scholar 

  • Lenk, P., Herrmann, H.-W., Joger, U., & Wink, M. (1999). Phylogeny and taxonomic subdivision of Bitis (Reptilia: Viperidae) based on molecular evidence. Kaupia, 8, 31–38.

    Google Scholar 

  • Lenk, P., Kalyabina, S., Wink, M., & Joger, U. (2001). Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 19, 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Leviton, A. E., Gibbs, J. R. H., Heal, E., & Dawson, C. E. (1985). Standards in herpetology and ichthyology. Part I. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia, 1985, 802–832.

    Google Scholar 

  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925.

    Article  CAS  PubMed  Google Scholar 

  • Littlewood, D. T. J., & Smith, A. B. (1995). A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philosophical Transactions of the Royal Society B, 347, 213–234.

    Article  CAS  Google Scholar 

  • Marx, H., & Rabb, G. B. (1965). Relationships and zoogeography of the viperine snakes (family Viperidae). Fieldiana Zoology, 44, 161–206.

    Google Scholar 

  • Miles, D. B., & Dunham, A. E. (1993). Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses. Annual Review of Ecology and Systematics, 24, 587–619.

    Article  Google Scholar 

  • Murphy, R. W., Fu, J., Lathrop, A., Feltham, J. V., & Kovac, V. (2002). Phylogeny of the rattlesnakes (Crotalus and Sistrurus) inferred from sequences of five mitochondrial DNA genes. In G. W. Schuett, M. Höggren, M. E. Douglas, & H. W. Greene (Eds.), Biology of the vipers (pp. 69–92). Eagle Mountain: Eagle Mountain Publishing.

    Google Scholar 

  • Nowak, E. M., Theimer, T. C., & Schuett, G. W. (2008). Functional and numerical responses of predators: where do vipers fit in the traditional paradigms? Biological Reviews, 83, 601–620.

    Article  PubMed  Google Scholar 

  • Pitman, C. R. S. (1974). A guide to the snakes of Uganda. Codicote: Wheldon & Wesley.

    Google Scholar 

  • Pyron, R. A. (2011). Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology, 60, 466–481.

    Article  PubMed  Google Scholar 

  • Rambaut, A., & Drummond, A. J. (2009). Tracer v1.5. Available at http://tree.bio.ed.ac.uk/software/tracer/. Accessed 1 Apr 2013

  • Retallack, G. J., Dugas, D. P., & Bestland, E. A. (1990). Fossil soils and grasses of a Middle Miocene East African grassland. Science, 247, 1325–1328.

    Article  CAS  PubMed  Google Scholar 

  • Roelke, C. E., & Childress, M. J. (2007). Defensive and infrared reception responses of true vipers, pitvipers, Azemiops and colubrids. Journal of Zoology, 273, 421–425.

    Article  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Safer, A. B., & Grace, M. S. (2004). Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets. Behavioural Brain Research, 154, 55–61.

    Article  PubMed  Google Scholar 

  • Sánchez, E. E., Hotle, D., & Rodríguez-Acosta, A. (2011). Neutralization of Bitis parviocula (Ethiopian mountain adder) venom by the South African Institute of Medical Research (SAIMR) antivenom. Revista do Instituto de Medicina Tropical de São Paulo, 53, 213–217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, E. N., & Gutberlet, R. L., Jr. (2001). Generalized frequency coding: a method of preparing polymorphic multistate characters for phylogenetic analysis. Systematic Biology, 50, 1–14.

    Article  Google Scholar 

  • Spawls, S., & Branch, W. R. (1995). Dangerous snakes of Africa. Johannesburg: Southern Books Publishing.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony and other methods, version 4.0b10. Smithsonian Institution, Washington, D.C.

  • Szyndlar, Z., & Rage, J.-C. (2002). Fossil record of the true vipers. In G. W. Schuett, M. Höggren, M. E. Douglas, & H. W. Greene (Eds.), Biology of the vipers (pp. 419–444). Eagle Mountain: Eagle Mountain Publishing.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanabe, A. S. (2011). Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources, 11, 914–921.

    Article  PubMed  Google Scholar 

  • Thiele, K. (1993). The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics, 9, 275–304.

    Article  Google Scholar 

  • Visser, J., & Chapman, D. S. (1978). Snakes and snakebite: venomous snakes and management of snakebite in Southern Africa. Cape Town: Purnell.

    Google Scholar 

  • Wahlberg, N., Braby, M. F., Brower, A. V. Z., de Jong, R., Lee, M.-M., Nylin, S., Pierce, N. E., Sperling, F. A. H., Vila, R., Warren, A. D., & Zakharov, E. (2005). Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B, 272, 1577–1586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiens, J. J. (1998). Does adding characters with missing data increase or decrease phylogenetic accuracy? Systematic Biology, 47, 625–640.

    Article  CAS  PubMed  Google Scholar 

  • Wiens, J. J. (2003). Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52, 528–538.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., & Morrill, M. C. (2011). Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology, 60, 719–731.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., & Servedio, M. R. (1997). Accuracy of phylogenetic analysis including and excluding polymorphic characters. Systematic Biology, 46, 332–345.

    Article  Google Scholar 

  • Wiens, J. J., Kuczynski, C. A., Townsend, T., Reeder, T. W., Mulcahy, D. G., & Sites, J. W., Jr. (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 59, 674–688.

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg, R. (2001). A phylogenetic analysis of Bitis (Reptilia: Squamata: Viperidae): recovering the evolutionary history of Africa’s most diverse viper genus. Unpublished MS thesis. The University of Texas at Tyler.

  • Wüster, W., Salomão, M. G., Quijada-Mascareñas, J. A., Thorpe, R. S., & BBBSP. (2002). Origins and evolution of the South American pitvipers fauna: evidence from mitochondrial DNA sequence analysis. In G. W. Schuett, M. Höggren, M. E. Douglas, & H. W. Greene (Eds.), Biology of the vipers (pp. 111–129). Eagle Mountain: Eagle Mountain Publishing.

    Google Scholar 

  • Wüster, W., Peppin, L., Pook, C. E., & Walker, D. E. (2008). A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Molecular Phylogenetics and Evolution, 49, 445–459.

    Article  PubMed  Google Scholar 

  • York, D. S., Silver, T. M., & Smith, A. A. (1998). Innervation of the supranasal sac of the puff adder. The Anatomical Record, 251, 221–225.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following curators who kindly made specimens or other material under their care available to us: L.S. Ford (AMNH); N. Gilmore (ANSP); S. Rogers and J.J. Wiens (CM); A. Resetar (FMNH); J.E. Simmons, E. Greenbaum, and L. Trueb (KU); A.D. Leaché, F.T. Burbrink, and J.A. McGuire (LSUMZ); J. Rosado and J. Hanken (MCZ); C. Cicero and D.B. Wake (MVZ); W.R. Branch (PEM); G. Schneider and A.G. Kluge (UMMZ); R. Reynolds, J. Poindexter III, S.W. Gotte, and R.W. McDiarmid (USNM); R. Ackley and J.A. Campbell (UTA); and J.B. Rasmussen (ZMUC). We thank A. Saunders and B. Shipley of the Denver Zoo for graciously providing us photographs of live Bitis specimens for our figures. We thank D. Killebrew, D. Pogue, N.B. Ford, and S.A. Orlofske for reviewing an earlier version of this manuscript. Stephen Spawls was an invaluable field companion as RDW and RLG conducted research in the southwestern forests of Ethiopia. Bill Branch graciously contributed correspondence and advice to RDW during this study. Funding for a trip to Ethiopia by RDW and RLG in search of Bitis parviocula was provided through a University of Texas at Tyler Fund for Excellence grant and an East Texas Herpetological Society grant. RCJ received funding through an NSF GK-12 Fellowship (DGE 0742544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Jadin.

Additional information

Rod D. Wittenberg and Robert C. Jadin are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1

Specimens examined. Museum acronyms follow Leviton et al. (1985). (DOC 258 kb)

Appendix S2

Morphological character descriptions used in the morphological phylogenetic analyses. (DOC 256 kb)

Table S1

Taxa and data used in DNA analysis. Abbreviations are as follows: ND4 = NADH dehydrogenase subunit 4, Cyt b = cytochrome b, 16S and 12S = small ribosomal RNA fragments, ND2 = NADH dehydrogenase subunit 2, PRLR = prolactin receptor, Ba34 = anonymous nuclear locus from Barlow et al. (2012). (DOC 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittenberg, R.D., Jadin, R.C., Fenwick, A.M. et al. Recovering the evolutionary history of Africa’s most diverse viper genus: morphological and molecular phylogeny of Bitis (Reptilia: Squamata: Viperidae). Org Divers Evol 15, 115–125 (2015). https://doi.org/10.1007/s13127-014-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0185-3

Keywords

Navigation