Skip to main content
Log in

The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this study, adsorption of catalase enzyme onto activated carbon obtained from apple shell, kinetic parameters, and activation data of adsorption process was investigated. Temperature (15, 25, 36.5, and 45 °C), solution pH (5.5, 7, and 9), initial catalase enzyme concentration (1.10−1, 2.10−1, and 2.5.10−1 g l−1), and ionic strength (1.10−2, 5.10−2, and 7.5.10−2 M) have taken as kinetic parameters for the adsorption of catalase enzyme on activated carbon. In all runs, common parameters of temperature, pH, initial enzyme concentration, and ionic strength were taken as 298 K, pH 7, 0.2 g l−1, and 5.10−2 M, respectively. The results of experiments revealed that the adsorption of catalase enzyme onto activated carbon increased with increasing temperature (15–45 °C), ionic strength, and initial catalase enzyme concentration. However, the adsorption process of catalase on activated carbon was affected negatively by increased pH. The thermodynamic functions such as enthalpy (ΔH), activation energy (Ea), entropy (ΔS), and Gibbs energy (ΔG) were investigated. ΔG, Ea, ΔH, and ΔS were found to be − 70.61, 4.19, − 1.69 kJ mol−1, and 231 J mol−1 K−1 for catalase enzyme adsorption, respectively. The adsorption of the process was investigated using Eyring and Arrhenius equations, and the findings showed that the adsorption kinetic is coherent with the pseudo-second-order model. Eventually, activated carbon can be used as an effective adsorbent for the adsorption of catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sen, F., Karataş, Y., Gülcan, M., & Zahmakıran, M. (2014). Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Advances, 4(4), 1526–1531.

    Article  Google Scholar 

  2. Akocak, S., Şen, B., Lolak, N., Şavk, A., Koca, M., Kuzu, S., & Şen, F. (2017). One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as a highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects, 11, 25–31.

    Article  Google Scholar 

  3. Pamuk, H., Aday, B., Kaya, M., & Sen, F. (2015). Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Advances, 5, 49295–49300.

    Article  Google Scholar 

  4. Sen, B., Kuzu, S., Demir, E., Okyay, T. O., & Sen, F. (2017). Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. International Journal of Hydrogen Energy, 42(36), 23299–23306.

    Article  Google Scholar 

  5. Demir, E., Savk, A., Sen, B., & Sen, F. (2017). A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Structures & Nano-Objects, 12, 41–45.

    Article  Google Scholar 

  6. Sahin, B., Aygun, A., Gunduz, H., Sahin, K., Demir, E., Akocak, S., & Sen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids and Surfaces B: Biointerfaces, 163, 119–124.

    Article  Google Scholar 

  7. Demirci, T., Celik, B., Yıldız, Y., Eriş, S., Arslan, M., Kilbas, B., & Sen, F. (2016). One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 6, 76948–76956.

    Article  Google Scholar 

  8. Celik, B., Baskaya, G., Karatepe, O., Erken, E., & Sen, F. (2016). Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41, 5661–5669.

    Article  Google Scholar 

  9. Abrahamson, J. T., Sen, F., Sempere, B., & Wal, M. P. (2013). Excess thermopower and the theory of thermopower waves. ACS Nano, 7(8), 6533–6544.

    Article  Google Scholar 

  10. Bozkurt, S., Tosun, B., Sen, B., Akocak, S., Savk, A., Ebeoğlugil, M. F., & Sen, F. (2017). A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Analytica Chimica Acta, 989C, 88–94.

    Article  Google Scholar 

  11. Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., & Sen, F. (2017). Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chemistry Select., 2(4), 1548–1555.

    Google Scholar 

  12. Dasdelen, Z., Yıldız, Y., Eris, S., & Sen, F. (2017). Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Applied Catalysis B: Environmental, 219C, 511–516.

    Article  Google Scholar 

  13. Karatepe, O., Yildiz, Y., Pamuk, H., Eris, S., Dasdelen, Z., & Sen, F. (2016). Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Advances, 6, 50851–50857.

    Article  Google Scholar 

  14. Baskaya, G., Esirden, I., Erken, E., Kaya, M., & Sen, F. (2017). Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. Journal of Nanoscience and Nanotechnology, 17, 1992–1999.

    Article  Google Scholar 

  15. Erkan, A., Bakir, U., & Karakas, G. (2006). Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 184, 313–321.

    Article  Google Scholar 

  16. Preety, V. H. (2014). Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support. Applied Biochemistry and Biotechnology, 172, 115–130.

    Article  Google Scholar 

  17. Gianfreda, L., & Scarfi, M. R. (1991). Enzyme stabilization: state of the art. Molecular and Cellular Biochemistry, 100(2), 97–128.

    Article  Google Scholar 

  18. Dogac, Y. I., Cinar, M., & Teke, M. (2015). Improving catalase stability properties by encapsulation in alginate=Fe3O4 magnetic composite beads for enzymatic removal of H2O2. Preparative Biochemistry & Biotechnology, 45, 144–157.

    Article  Google Scholar 

  19. Gao, X., Yang, W., Pang, P., LiaoCai, S. Q., Zeng, K., & Grimes, C. A. (2007). A wireless magneto elastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B: Chemical, 128, 161–167.

    Article  Google Scholar 

  20. Amorim, A. M., Gasques, M. D. G., Jurgen, A. J., & Scharf, M. (2002). The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Anais da Academia Brasileira de Ciências, 74, 433–436.

    Article  Google Scholar 

  21. Tatsuma, T., Watanabe, T., Tatsuma, S., & Watanabe, T. (1994). Substrate-purging enzyme electrodes, peroxidase/catalase electrodes for hydrogen peroxide with an improved upper sensing limit. Analytical Chemistry, 66(2), 290–294.

    Article  Google Scholar 

  22. Madaras, M. B., Spokane, R. B., Johnson, J. M., & Woodward, J. R. (1997). Glutamine biosensors for biotechnology applications, with suppression of the endogenous glutamate signal. Analytical Chemistry, 69(18), 3674–3678.

    Article  Google Scholar 

  23. Santoni, T., Santianni, D., Manzoni, A., Zanardi, S., & Mascini, M. (1997). Enzyme electrode for glucose determination in whole blood. Talanta, 44(9), 1573–1580.

    Article  Google Scholar 

  24. Hnaien, M., Lagarde, F., & Jaffrezic-Renault, N. (2010). A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination. Talanta, 81(1–2), 222–227.

    Article  Google Scholar 

  25. Felhofer, J. L., Caranto, J. D., & Garcia, C. D. (2010). Adsorption kinetics of catalase to thin films of carbon nanotubes. Langmuir, 26(22), 17178–17183.

    Article  Google Scholar 

  26. Alptekin, O., Tukel, S. S., Yıldırım, D., & Alagöz, D. (2010). Immobilization of catalase onto Eupergit C and its characterization. Journal of Molecular Catalysis B: Enzymatic, 64(3–4), 177–183.

    Article  Google Scholar 

  27. Yang, J. J., Ma, X. O., Zhang, Z. S., Cheng, B., Li, S., & Wang, G. (2010). Lipase immobilized by modificationcoupled and adsorption-cross-linking methods: a comparative study. Biotechnology Advances, 28, 644–650.

    Article  Google Scholar 

  28. Reguly, J. C. (2000). Biotechnology of fermentative process (Portuguese) (Vol. 3). Pelotas, Brasil: Editora Universitário/UFPel ISBN: 85-7192-128-8.

    Google Scholar 

  29. Burns, R. G. (1986). Interaction of enzymes with soil mineral and organic colloids. Madison: Soil Science Society of America.

  30. Kise, H., & Hayakawa, A. (1991). Immobilization of proteases to porous chitosan beads and their catalysis for ester and peptide synthesis in organic solvents. Enzyme and Microbial Technology, 13, 584–588.

    Article  Google Scholar 

  31. Huang, X. L. (1997). Comparıson of the propertıes of trypsın immobilized on 2 celite(TM) derıvatıves, Catignani H.L, and Swaisgood H.E. Journal of Biotechnology, 53, 21.

    Article  Google Scholar 

  32. Gooding, J. J., & Hal, E. A. H. (1996). Membrane properties of acrylate bulk polymers for. Biosensor applications. Biosensors & Bioelectronics, 11, 1031.

    Article  Google Scholar 

  33. Yıldız, A., & GÜR, A. (2007). Adsorption of phenol and chlorophenols on pure and modified sepiolite. Journal of the Serbian Chemical Society, 72, 467.

    Article  Google Scholar 

  34. Yıldız, A., GÜR, A., & Ceylan, H. (2006). Adsorption of aniline, phenol, and chlorophenols on pure and modified bentonite. The Russıan Journal of Physıcal Chemıstry, 80, S172–S176.

    Google Scholar 

  35. Yıldız, A., & GÜR, A. (2006). Adsorption of phenol and phenol derivatives on pure and modified kaolinite. Asian Journal of Chemistry, 18, 2650.

    Google Scholar 

  36. Baileey, J. E., & Ollis, D. F. (1986). Applied enzyme catalysis (p. 180). Singapore: Mc Graw-Hill International.

    Google Scholar 

  37. Kennedy, J. F., & Melo, E. H. M. (1990). Immobilized enzymes and cells. Chemical Engineering Progress, 86, 81.

    Google Scholar 

  38. Bjorlıng, F., Godtfredsen, S. E., & Kırk, O. (1991). The future impact of industrial lipases. Trends in Biotechnology, 9, 360–363.

    Article  Google Scholar 

  39. Demirbas, Ö., Calimli, M. H., Kuyuldar, E., Alma, M. H., Nas, M. S., & Sen, F. Equilibrium, kinetics, and thermodynamic of adsorption of enzymes on diatomite clay materials. BioNanoscience. https://doi.org/10.1007/s12668-019-00615-1.

  40. Çalımlı, M. H., Demirbaş, Ö., Aygün, A., Alma, M. H., Nas, M. S., & Şen, F. (2018). Immobilization kinetics and mechanism of bovine serum albumin on diatomite clay from aqueous solutions. Applied Water Science, 8, 209.

    Article  Google Scholar 

  41. Akkuş, P., (2006). “Lipaz Kullanılarak Şeker Esteri Sentezi”, G.Y.T.E. Mühendislik ve Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Gebze.

  42. Hunter, J. (1999). Introduction to modern colloid science. New York, USA: Oxford University Press.

    Google Scholar 

  43. Doğan, M., Alkan, M., Demirbaş, O., Özdemir, Y., & Özmetin, C. (2006). Adsorption kinetics of Maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101.

    Article  Google Scholar 

  44. Demirbaş, O., (2006). Doctorate Thesis, Balikesir University Institute of Science, Balıkesir.

  45. Tekin, N., Demirbaş, O., & Alkan, M. (2005). Adsorption of cationic polyacrylamide onto kaolinite. Microporous and Mesoporous Materials, 85, 340–350.

    Article  Google Scholar 

  46. Vermöhlen, K., Lewandowski, H.-D., Narres, H. D., & Schwuger, M. J. (2000). Adsorption of polyelectrolytes onto oxides—the influence of ionic strength, molar mass, and Ca2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, 45–53.

    Article  Google Scholar 

  47. Vecchia, R. D., Sebrao, D., Nascımento, M. G., & Soldı, V. (2005). Carboxymethylcellulose and poly(vinyl alcohol) used as film support for lipases immobilization. Process Biochemistry, 40, 2677–2682.

    Article  Google Scholar 

  48. Pronk, W., Kerkhof, P. J. A. M., Van Helden, C., & van Rıet, K. (1988). The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnology and Bioengineering, 32, 512–518.

    Article  Google Scholar 

  49. Xu, H., Li, M., & He, B. (1995). Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme and Microbial Technology, 17, 194–199.

    Article  Google Scholar 

  50. Montero, S., Blanco, A., Virto, M., Ladenta, L. C., Agud, I., Solozabal, R., Lascaray, J. M., Renobales, M., Llama, M. J., & Serra, J. L. (1993). Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme and Microbial Technology, 15, 239–247.

    Article  Google Scholar 

  51. Guo, Y., & Bustin, R. M. (1998). FTIR spectroscopy and reflectance of modern charcoals and decayed fungal woods: Implications for studies of intertinite in coals. International Journal of Coal Geology, 37, 29–53.

    Article  Google Scholar 

  52. Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Crfao, J. J. M. (1999). Modification of surface chemistry of activated carbons. Carbon, 37, 1379–1389.

    Article  Google Scholar 

  53. Lu, C. F., Nadarajah, A., & Chittur, K. K. (1994). A comprehensive model for protein adsorption to surfaces. Journal of Colloid and Interface Science, 168, 152–161.

    Article  Google Scholar 

  54. Giacomelli, C. E., Bremer, M. G., & Norde, W. J. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220, 13–23.

    Article  Google Scholar 

  55. Ai, Q., Yang, D., Li, Y., Shi, J., Wang, X., & Jiang, Z. (2014). Highly efficient covalent immobilization of catalase on titanate nanotubes. Biochemical Engineering Journal, 83, 8–15.

    Article  Google Scholar 

  56. Rahimi-Gorji, M., Gorji, T. B., & Gorji-Bandpy, M. (2016). Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Computers in Biology and Medicine, 74, 1–17.

    Article  Google Scholar 

  57. Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., & Gorji, T. B. (2015). CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids, 209, 121–133.

    Article  Google Scholar 

  58. Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNTS-water-based nanofluid over a stretching sheet. BioNanoScience. https://doi.org/10.1007/s12668-018-0592-6.

  59. Sureshkumar Raju, S., Ganesh Kumar, K., Rahimi-Gorji, M., & Khan, I. Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsystem Technologies. https://doi.org/10.1007/s00542-019-04340-3.

  60. Ahmed, N., Shah, N. A., Ahmad, B., Shah, S. I. A., Ulhaq, S., & Rahimi-Gorji, M. Transient MHD convective flow of fractional nanofluid between vertical plates. Journal of Applied and Computational Mechanics. https://doi.org/10.22055/JACM.2018.26947.1364.

  61. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  Google Scholar 

  62. Doğan, M., & Alkan, M. (2003). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50, 517–528.

    Article  Google Scholar 

  63. Mall, I. D., & Upadhyay, S. N. (1995). Treatment of methyl violet bearing wastewater from paper mill effluent using low-cost adsorbents. Journal of Indian Pulp and Paper Technical Association, 7(1), 51–57.

    Google Scholar 

  64. Kannan, N., & Sundaram, M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51, 5–40.

    Article  Google Scholar 

  65. Laidler, K. J., & Meiser, J. M. (1999). Physical chemistry (p. 852). New York, NY: Houghton Mifflin.

    Google Scholar 

  66. Singh, D. (2000). Studies of the adsorption thermodynamics of oxamyl on fly ash. Adsorption Science and Technology, 18(8), 741–748.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Salih Nas, Anish Khan, Abdullah M. Asiri or Fatih Şen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

None.

Funding Statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 218 kb)

ESM 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirbaş, Ö., Çalımlı, M.H., Demirkan, B. et al. The Kinetic Parameters of Adsorption of Enzymes Using Carbon-Based Materials Obtained from Different Food Wastes. BioNanoSci. 9, 749–757 (2019). https://doi.org/10.1007/s12668-019-00635-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00635-x

Keywords

Navigation