Skip to main content
Log in

Detecting and monitoring of landslides using persistent scattering synthetic aperture radar interferometry

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Persistent scatterer synthetic aperture radar interferometry (PSInSAR) is an applied time series technique to overcome limitations of InSAR (temporal and geometrical decorrelation and atmospheric delay anomalies) for monitoring of ground surface deformations. This method only monitors displacements on pixels with nearly constant temporal backscattering characteristics. In this study, datasets of ascending ALOS PALSAR (L-band) images recorded from 2006 to 2010 and descending ENVISAT ASAR (C-band) images acquisitioned between 2003 and 2010 were processed to detect and monitor the landslide occurred in the Noghol area, Iran. Application of the PSInSAR technique on both PALSAR and ASAR images has significantly improved monitoring of the Noghol landslide. However, the determination of vertical displacement of the landslide by the ASAR images processing is more correct compared to results of the PALSAR processing due to the descending orbital motion of ASAR. The ASAR images also overwhelm PALSAR images for determination of the landslide extent because of detection of more persistent scatterer points. The landslide displacement and aspect obtained by the Global Navigation Satellite System (GNSS) and PSInSAR techniques are in agreement (about 1.2–1.5 m westward in the period of 2003–2010). Particularly, processing results of the ASAR images are more similar to the GNSS measurements. Furthermore, assessment of the landslide type, mechanism and its displacement direction were possible by integration of the PALSAR and ASAR radar images with ascending and descending orbital motions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aghanabati A (2006) Geology of Iran. Geology survey of Iran

  • Aria consulting engineers (2011) Monitoring of Noghol landslide report

  • Bardi F, Frodella W, Ciampalini A, Del Ventisette C, Gigli G, Fanti R, Basile G, Moretti S, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the San Fratello case study. Geomorphology 223:45–60

    Article  Google Scholar 

  • Bayer B, Schmidt D, Simoni A (2017) The influence of external digital elevation models on PS-InSAR and SBAS results: implications for the analysis of deformation signals caused by slow moving landslides in the Northern Apennines (Italy). IEEE Trans Geosci Remote Sens 55(5):2618–2631

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Bhattacharya A. Mukherjee K, Kuri M, Vöge M, Sharma ML, Arora MK, Bhasin RK (2015) Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India. Nat Hazards 79(3):2101–2121

    Article  Google Scholar 

  • Bianchini S, Cigna F, Righini G, Proietti C, Casagli N (2012) Landslide HotSpot mapping by means of persistent scatterer interferometry. Environ Earth Sci 67:1155–1172. https://doi.org/10.1007/s12665-012-1559-5

    Article  Google Scholar 

  • Bianchini S, Ciampalini A, Raspini F, Bardi F, Di Traglia F, Moretti S, Casagli N (2015) Multi-temporal evaluation of landslide movements and impacts on buildings in San Fratello (Italy) by means of C-band and X-band PSI data. Pure Appl Geophys 172(11):3043–3065

    Article  Google Scholar 

  • Blanco-Sanchez P, Mallorqui JJ, Duque S, Monells D (2008) The coherent pixels technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure Appl Geophys 165(6):1167–1193

    Article  Google Scholar 

  • Bouali EH, Oommen T, Escobar-Wolf R (2018) Mapping of slow landslides on the Palos. Verdes Peninsula using the California Landslide Inventory and persistent scatterer interferometry. Landslides 15(3):439–452

    Article  Google Scholar 

  • Bovenga F, Wasowski J, Nitti DO, Nutricato R, Chiaradia MT (2012) Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens Environ 119:272–285

    Article  Google Scholar 

  • Bovenga F, Nitti DO, Fornaro G, Radicioni F, Stoppini A, Brigante R (2013) Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int J Remote Sens 34(11):4083–4104. https://doi.org/10.1080/01431161.772310

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full resolution DInSAR map generation for slow-moving landslide analysis at differential scales. Eng Geol 112(1–4):29–42. https://doi.org/10.1016/j.enggeo.2010.01.003

    Article  Google Scholar 

  • Casu F, Manconi A, Pepe A, Lanari R (2011) Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude pixel-offset SBAS technique. IEEE Trans Geosci Remote 49(7):2752–2763

    Article  Google Scholar 

  • Catalao J, Nico G, Hanssen R, Catita C (2011) Merging GNSS and atmospherically corrected InSAR data to map 3-D terrain displacement velocity. IEEE Trans Geosci Remote Sens 49:2354–2360

    Article  Google Scholar 

  • Chaabane F, Tupin F, Maitre H (2005) An empirical model for interferometric coherence. In: Proceedings of SPIE—the international society for optical engineering 5980, art. no. 59800E. https://doi.org/10.1117/12.627341

  • Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A Opt Image Sci Vis 18(2):338–351

    Article  Google Scholar 

  • Cigna F, Osmanoglu B, Cabral-Cano E, Dixon TH, Avila-Olivera JA, Garduno-Monroy VH, Demets C, Wdowinski S (2012) Monitoring land subsidence and its induced geological hazard with synthetic aperture radar interferometry: a case study in Morelia, Mexico. Remote Sens Environ 117:146–161

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  • Colesanti C, Wasowsky J (2006) Investigating landslides with spaceborne Synthetic Aperture Radar (SAR) interferometry. Eng Geol 88(3–4):173–199. https://doi.org/10.1016/j.enggeo.2006.09.013

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14

    Article  Google Scholar 

  • Comerci V, Vittori E, Cipolloni C, Di Manna P, Guerrieri L, Nisio S, Succhiarelli C, Ciuffreda M, Bertoletti E (2015) Geohazards monitoring in Roma from InSAR and in situ data: outcomes of the PanGeo project. Pure Appl Geophys 172(11):2997–3028. https://doi.org/10.1007/s00024-015-1066-1

    Article  Google Scholar 

  • Costantini M, Falco S, Malvarosa F, Minati F (2008) A new method for identification and analysis of persistent scatterers in series of SAR images. In: Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS’08), Boston, MA, USA, 6–11, pp 449–452

  • Crosetto M, Biescas E, Duro J, Closa J, Arnaud A (2008) Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogramm Eng Remote Sens 74(4):443–450

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas M, Crippa B (2011) Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 3:305–318

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Devanthéry N, Cuevas-González M, Barra A, Crippa B (2016) Persistent scatterer interferometry using sentinel-1 data. The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XLI-B7, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, special report 247-Transportation Research Board, National Research Council. National Academy Press, Washington, DC, pp 36–75

    Google Scholar 

  • Darvishzadeh A (2001) Geology of Iran. Amirkabir Publications, Tehran

    Google Scholar 

  • Ding XL, Li ZW, Zhu JJ, Feng GC, Long JP (2008) Atmospheric effects on InSAR measurements and their mitigation. Sensor 8:5426–5448

    Article  Google Scholar 

  • Dong J, Liao M, Xu Q, Zhang L, Tang M, Gong J (2018a) Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: a case study of Danba County in the Dadu River Basin. Eng Geol 240(5):95–109

    Article  Google Scholar 

  • Dong J, Zhang L, Tang M, Liao M, Xu Q, Gong J, Ao M (2018b) Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens Environ 205:180–198

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88(3–4):200–217

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    Article  Google Scholar 

  • Fiaschi S, Mantovani M, Frigerio S, Pasuto A, Floris M (2017) Testing the potential of Sentinel-1A TOPS interferometry for the detection and monitoring of landslides at local scale (Veneto Region, Italy). Environ Earth Sci 76:492

    Article  Google Scholar 

  • Galve JP, Cevasco A, Brandolini P, Soldati M (2015) Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12(1):101–114

    Article  Google Scholar 

  • García-Davalillo J, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11:225–246. https://doi.org/10.1007/s10346-012-0379-8

    Article  Google Scholar 

  • Gernhardt S. Adam N. Eineder M, Bamler R (2010) Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Ann GIS 16(2):103–111

    Article  Google Scholar 

  • Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci 66:1585–1595. https://doi.org/10.1007/s12665-011-0951-x

    Article  Google Scholar 

  • Harger RO (1970) Synthetic Aperture Radar Systems: theory and design. Academic Press, New York

    Google Scholar 

  • Hastaoglu KO (2016) Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar Turkey. Geomat Nat Hazards Risk 7(2):786–803

    Article  Google Scholar 

  • Herrera G, Notti D, Garcia-Davalillo JC, Mora O, Cooksley G, Sanchez M, Arnaud A, Crosetto M (2011) Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8(2):195–206

    Article  Google Scholar 

  • Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Hooper A (2006) Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation, Ph.D. Thesis, Stanford University, Stanford

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:96–106

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):1–5

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J Geophys Res: Solid Earth 112(B7):1978–2012

    Article  Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13

    Article  Google Scholar 

  • Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2014) Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev 133:1–17. https://doi.org/10.1016/j.earsscirev.2014.02.005

    Article  Google Scholar 

  • Iglesias R, Mallorqui J, Monells D, López-Martínez C, Fabregas X, Aguasca A, Gili J, Corominas J (2015) PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images. Remote Sens 7(1):530–563

    Article  Google Scholar 

  • Jordan H, Francesca Cigna F, Bateson L (2017) Identifying natural and anthropogenically-induced geohazards from satellite ground motion and geospatial data: Stoke-on-Trent, UK. Int J Appl Earth Obs Geoinf 63:90–103

    Article  Google Scholar 

  • Kampes BM (2006) Radar interferometry, persistent scatterer technique. Springer, Berlin

    Google Scholar 

  • Kiseleva Е, Mikhailov V, Smolyaninova E, Dmitriev P, Golubev V, Timoshkina E, Hooper A, Samiei-Esfahany S, Hanssen R (2014) PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus. Procedia Technol 16:404–413

    Article  Google Scholar 

  • Komac M, Holly R, Mahapatra P, Van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12:241–257

    Article  Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E (2004) A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42(7):1377–1386

    Article  Google Scholar 

  • Liu P, Li Z, Hoeya T, Kincal C, Zhang J, Zeng Q, Muller JP (2013) Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int J Appl Earth Obs Geoinf 21:253–264

    Article  Google Scholar 

  • Lu P. Catani F. Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from persistent scatterer interferometry. Landslides 11(4):685–966

    Article  Google Scholar 

  • Manconi A, Casu F, Ardizzone F, Bonano M, Cardinali M, De Luca C, Gueguen E, Marchesini I, Parise M, Vennari C, Lanari R, Guzzeti F (2014) Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat Hazard Earth Syst Sci 14:1835–1841. https://doi.org/10.5194/nhess-14-1835-2014

    Article  Google Scholar 

  • Mantovani F, Soeters R, Van Westen C (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15(3–4):213–225

    Article  Google Scholar 

  • Michel R, Avouac JP (1999) Measuring ground displacement from SAR amplitude images: application to the Landers earthquake. Geophys Res Lett 26(7):875–878. https://doi.org/10.1029/1999GL900138

    Article  Google Scholar 

  • Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41(10):2243–2253

    Article  Google Scholar 

  • Necsoiu M, McGinnis RN, Hooper DM (2014) New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 11(6):1141–1153

    Article  Google Scholar 

  • Nishiguchi T, Tsuchiya S, Imaizumi F (2017) Detection and accuracy of landslide movement by InSAR analysis using PALSAR-2 data. Landslides 14(4):1483–1490. https://doi.org/10.1007/s10346-017-0821-z

    Article  Google Scholar 

  • Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of Xband satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875. https://doi.org/10.5194/nhess-10-1865-2010

    Article  Google Scholar 

  • Perissin D, Wang T (2012) Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans Geosci Remote Sens 50(1):271–280

    Article  Google Scholar 

  • Peyret M, Djamour Y, Rizza M, Ritz J-F, Hurtrez J-E, Goudarzi MA, Nankali H, Ch_ery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GNSS and SAR interferometry. Eng Geol 100:131–141

    Article  Google Scholar 

  • Piacentini D, Devoto S, Mantovani M, Pasuto A, Prampolini M, Soldati M (2015) Landslide susceptibility modeling assisted by persistent scatterers interferometry (PSI): an example from the northwestern coast of Malta. Nat Hazards 78(1):681–697

    Article  Google Scholar 

  • Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using persistent scatterer interferometry (PSI). Int J Remote Sens 33(7):2068–2096

    Article  Google Scholar 

  • Romy S, Doubre C, Malet JP, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330

    Article  Google Scholar 

  • Samsonov S (2010) Topographic correction for ALOS PALSAR interferometry. IEEE Trans Geosci Remote Sens 48(7):3020–3027

    Article  Google Scholar 

  • Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6(10):9600–9652

    Article  Google Scholar 

  • Sedaghat ME, Shaverdi T (1975) Geological map of Yasuj, scale 1:100,000. Series sheet 6351, Geological Survey of Iran

  • Shirani K (2004) Evaluation of the most important landslide hazard zonation for a selection of suitable method in Semirom, South of Isfahan, Ministry of Jihad-e-Agriculture

  • Singhroy V (2005) Remote sensing for landslide assessment: chap. 16. In: Glade T, Anderson MG, Crozier MJ (eds) Book on landslides hazard and risk. Wiley, New York, pp 469–492

    Google Scholar 

  • Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluation sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144. https://doi.org/10.1016/j.rse.2014.03.003

    Article  Google Scholar 

  • Sousa JJ, Ruiz A, Hassen R, Bastos L, Gill A, Galindo-Zaldivar J, Galdeano C (2010) PS-InSAR processing methodologies in the detection of field surface deformation—study of the Granada basin (Central Betic Cordilleras, southern Spain). J Geodyn 49:181–189

    Article  Google Scholar 

  • Sousa JJ, Hooper A, Hanssen R, Bastos L, Ruiz A (2011) Persistent scatterer InSAR: a comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ 115:2652–2663

    Article  Google Scholar 

  • Strozzi T, Luckman A, Murray T, Wegmüller U, Werner CL (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40(11):2384–2391

    Article  Google Scholar 

  • Strozzi T, Wegmuller U, Keusen HR, Graf K, Wiesmann A (2006) Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Trans Geosci Remote Sens 3(1):15–18

    Article  Google Scholar 

  • Tantianuparp P, Shi X, Zhang L, Balz T, Liao M (2013) Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 5(6):2704–2719

    Article  Google Scholar 

  • Tessari G, Floris M, Pasquali P (2017) Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environ Earth Sci 76:85. https://doi.org/10.1007/s12665-017-6403-5

    Article  Google Scholar 

  • Tofani V, Segoni S, Agostini A, Catani F, Casagli N (2013) Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sci 13:299–309

    Article  Google Scholar 

  • Tomas R, Herrera G, Lopez-Sanchez JM, Vicente F, Cuenca A, Mallorqu JJ (2010) Study of the land subsidence in Orihuela City (SE Spain) using PSI data: distribution, evolution and correlation with conditioning and triggering factors. Eng Geol 115(1–2):105–121

    Article  Google Scholar 

  • Tosi L, Da Lio C, Strozzi T, Teatini P (2016) Combining L- and X-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po River Delta and Venice Lagoon, Italy. Remote Sens 8:308. https://doi.org/10.3390/rs8040308

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizer RJ (eds) Special robert 176: landslides analysis and control TRB. National Research Council, Washington, DC, pp 11–33

    Google Scholar 

  • Varnes DJ (1984) The IAEG commission on landslides and other mass-movements 1984. Landslide hazard zonation: a review of principles and practice. The UNESCO Press, Paris

    Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003

    Article  Google Scholar 

  • Wasowski J, Bovenga F, Nitti DO, Nutricato R (2012) Investigating landslides with persistent scatterers interferometry (PSI): current issues and challenges. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Proceedings of the 11th international and 2nd North American symposium on landslides, Banff (Canada), 3–8 June, 2012. Landslides and Engineered Slopes 2. CRC Press/Balkema, Leiden, pp 1295–1301

  • Watershed deputy of natural resources survey (2011) Monitoring landslide report

  • Xie M, Huang J, Wang L, Huang J, Wang Z (2016) Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir. Environ Earth Sci 75:717. https://doi.org/10.1007/s12665-016-5446-3

    Article  Google Scholar 

  • Xue Y, Meng X, Wasowski J, Chen G, Li K, Guo P, Bovenga F, Zeng R (2016) Spatial analysis of surface deformation distribution detected by persistent scatterer interferometry in Lanzhou Region, China. Environ Earth Sci 75:80. https://doi.org/10.1007/s12665-015-4806-8

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslide 7(3):359–365. https://doi.org/10.1007/s10346-010-0225-9

    Article  Google Scholar 

  • Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102(B4):7547–7563

    Article  Google Scholar 

  • Zhao C, Lu Z, Zhang Q, Fuente J (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens Environ 124:348–359

    Article  Google Scholar 

  • Zhou Z(2013) The applications of InSAR time series analysis for monitoring long-term surface change in peatlands. Ph.D. Thesis, University of Glasgow

  • Zhu W, Zhang Q, Ding X, Zhao C, Yang C, Qu F, Qu W (2014) Landslide monitoring by combining of CR-InSAR and GNSS techniques. Adv Space Res 53:430–439

    Article  Google Scholar 

Download references

Acknowledgements

The European Space Agency (ESA) is acknowledged for providing the radar data used in the research. This article is part of the results of a research project entitled “Differential interferometry synthetic aperture radar (DInSAR) and persistent scatterer (PS) Performance assessment on detection and monitoring of landslide” that supported by Isfahan Agricultural and Natural Resources Research and Education Center under code # 0-38-29-94120. Authors also would like to thank Forest, range and watershed organization, Isfahan province for the GNSS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Shirani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, K., Pasandi, M. Detecting and monitoring of landslides using persistent scattering synthetic aperture radar interferometry. Environ Earth Sci 78, 42 (2019). https://doi.org/10.1007/s12665-018-8042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-8042-x

Keywords

Navigation