Skip to main content
Log in

Redox Initiated Cationic Polymerization: Reduction of Triarylsulfonium Salts by Silanes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A novel redox initiator system for carrying out the cationic polymerization of epoxide, oxetane and vinyl ether monomers has been developed. The redox couple is based on a triarylsulfonium salt as the oxidant with an organosilane as the reducing agent. The reaction between these two agents is markedly catalyzed by platinum and palladium complexes. Cationic polymerizations using this redox initiator system were carried out in a conventional manner with neat monomer or under solution conditions. This paper also describes the novel use of a two-component redox system in which the silane is delivered to the monomer sample in the vapor state. Optical pyrometry (infrared thermography) was employed as a convenient method with which to monitor the polymerizations. A study of the effects of variations in the structures of the triarylsulfonium salt, the silane and the type of noble metal catalyst were carried out. The use of this initiator system for carrying out commercially attractive cross-linking polymerizations for coatings, composites and electronic encapsulations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crivello JV (1993) In: Brunelle DJ (ed) Ring-opening polymerization. Hanser, Munich

    Google Scholar 

  2. Crivello JV, Fan M, Bi D (1992) J Appl Polym Sci 44:9

    Article  CAS  Google Scholar 

  3. Crivello JV, Lee JL (1985) Polym J 17(1):73

    Article  CAS  Google Scholar 

  4. Crivello JV (1985) In: McGrath JE (ed) Ring-opening polymerization. ACS Symp Ser No. 286. American Chemical Society, Washington, DC

    Google Scholar 

  5. Crivello JV (1978) In: Pappas SP (ed) UV curing science and technology. Technology Marketing, Stamford, CT

    Google Scholar 

  6. Pappas SP (1999) In: Pappas SP (ed) Radiation curing science and technology. Plenum, New York

    Google Scholar 

  7. Fletcher CJM, Hinshelwood CN (1935) J Chem Soc 596

  8. Walton TC, Crivello JV, Malik R (1997) Chem Mater 9:1273

    Article  Google Scholar 

  9. Crivello JV, Lam JHW (1981) J Polym Sci Part A: Polym Chem 19:539

    CAS  Google Scholar 

  10. Crivello JV, Lee JL (1983) J Polym Sci Part A: Polym Chem 21(4):1097

    CAS  Google Scholar 

  11. Crivello JV, Lee JL (1983) Makromol Chem 184:463

    Article  CAS  Google Scholar 

  12. Ledwith A (1978) Polymer 19:1217

    Article  CAS  Google Scholar 

  13. Klemm E, Flammersheim H-J, Märtin R, Hörhold H-H (1985) Angew Makromol Chem 135:131

    Article  CAS  Google Scholar 

  14. Baumann H, Timpe H-J (1984) Z Chem 24:18

    CAS  Google Scholar 

  15. Baumann H, Timpe H-J (1984) J Prakt Chem 326:529

    Article  CAS  Google Scholar 

  16. Timpe H-J, Merckel C, Baumann H (1986) Makromol Chem 187:187

    Article  CAS  Google Scholar 

  17. Yagci Y, Ledwith A (1988) J Polym Sci Part A: Polym Chem 26:1911

    Article  CAS  Google Scholar 

  18. Dursun C, Degirmenci M, Yagci Y, Jockusch S, Turro NJ (2003) Polymer 44:7389

    Article  CAS  Google Scholar 

  19. Degirmenci M, Hepuzer Y, Yagci Y (2002) J Appl Polym Sci 85:2389

    Article  CAS  Google Scholar 

  20. Yagci Y, Kminek I, Schnabel W (1992) Eur Polym J 28:387

    Article  CAS  Google Scholar 

  21. Yagci Y, Kminek I, Schnabel W (1993) Polymer 34:426

    Article  CAS  Google Scholar 

  22. Durmaz YY, Moszner N, Yagci Y (2008) Macromolecules 41:6714

    Article  CAS  Google Scholar 

  23. Lalevée J, Blanchard N, El-Roz M, Graff B, Allonas X, Fouassier JP (2008) Macromolecules 41:4180

    Article  Google Scholar 

  24. Lalevée J, El-Roz M, Graff B, Allonas X, Fouassier JP (2008) J Polym Sci Part A: Polym Chem 46(9):3042

    Article  Google Scholar 

  25. Lalevée J, Dirani A, El-Roz M, Allonas X, Fouassier JP (2008) J Polym Sci Part A: Polym Chem 46(6):2008

    Article  Google Scholar 

  26. Crivello JV, Lee JL (1985) Polym J 17(1):73

    Article  CAS  Google Scholar 

  27. Crivello JV, Jo KD, Kim WG, Bratslavsky S (1995) In: Mishra M, Nuyken O, Kobayashi S, Yagci Y, Sar B (eds) Macromolecular engineering: recent advances. Plenum, New York

    Google Scholar 

  28. Crivello JV, Lee JL (1989) J Polym Sci Part A: Polym Chem 27:3951

    Article  CAS  Google Scholar 

  29. Crivello JV, Lam JHW (1978) J Org Chem 43:3055

    Article  CAS  Google Scholar 

  30. Akhtar SR, Crivello JV, Lee JL, Schmitt ML (1990) Chem Mater 2(6):732

    Article  CAS  Google Scholar 

  31. Crivello JV, Ma J, Jiang F (2002) J Polym Sci Part A: Polym Chem 40(20):3465

    Article  CAS  Google Scholar 

  32. Crivello JV, Kong S (2000) Macromolecules 33(3):825

    Article  CAS  Google Scholar 

  33. Falk B, Vallinas SM, Crivello JV (2003) J Polym Sci Part A: Polym Chem 41(4):579

    Article  CAS  Google Scholar 

  34. Crivello JV, Falk B, Vallinas SM (2003) Polym Mater Sci Eng Prepr 88:209

    Google Scholar 

  35. Crivello JV, Falk B, Jang M, Zonca Jr MR, Vallinas SM (2004) RadTech Report May/June, p 36

  36. Crivello JV (2009) J Polym Chem Part A: Polym Chem (in press)

  37. Knipe AC (1981) In: Sterling CJM, Patai S (eds) The chemistry of the sulphonium group. Wiley, New York

    Google Scholar 

  38. Grimshaw J (1981) In: Sterling CJM, Patai S (eds) The chemistry of the sulphonium group. Wiley, New York

    Google Scholar 

  39. Larson GL (ed) (2008) Silicon-based reducing agents. Supplement to the Gelest Catalog. available on-line at www.gelest.com

  40. Crivello JV (1980) CHEMTECH 10(10):624

    CAS  Google Scholar 

  41. Chojnowski J, Fortuniak W, Stanczyk W (1987) J Am Chem Soc 109:7776

    Article  CAS  Google Scholar 

  42. Eaborn C (1991) J Organomet Chem 405:173

    Article  CAS  Google Scholar 

  43. Kursanov DN, Parnes ZN, Loim NM (1974) Synthesis 9:633

    Article  Google Scholar 

  44. Carey FA, Tremper HS (1968) J Am Chem Soc 90:2578

    Article  CAS  Google Scholar 

  45. Lambert JB, Zhang S, Stern CL, Huffman JC (1993) Science 260:1917

    Article  CAS  Google Scholar 

  46. Olah GA, Rasul G, Li X-Y, Buchholz HA, Sanford G, Surya Prakash GK (1994) Science 263:984

    Article  Google Scholar 

  47. Marciniec B (1992) Comprehensive handbook on hydrosilation. Pergamon, Oxford

    Google Scholar 

  48. Odian G (2004) Principles of polymerization. Wiley-Interscience, New York

    Book  Google Scholar 

  49. Karstedt BD (1973) US Patent 3,715,334 to General Electric Corp

  50. Lamoreaux HF (1965) US Patent 3,220,972 to General Electric Corp

  51. Ojima I, Li Z, Zhu J (1998) In: Rappoport Z, Apeloig Y (eds) Chemistry of silicon compounds. Wiley, New York

    Google Scholar 

  52. Saveant JM (1964) CR Hebd Seances Acad Sci Ser C 258:585

    CAS  Google Scholar 

  53. Nuyken O, Crivello JV (1992) In: Kricheldorf HR (ed) Handbook of polymer synthesis. Part A. Marcel Dekker, New York

    Google Scholar 

  54. Gandini A, Cheradame H (1980) Cationic polymerisation: initiation processes with alkenyl monomers. Springer, Heidelberg

    Book  Google Scholar 

  55. Watt WR (1979) In: Bauer RS (ed) Epoxy resin chemistry. ACS Symp Ser 114. American Chemical Society, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Crivello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crivello, J.V. Redox Initiated Cationic Polymerization: Reduction of Triarylsulfonium Salts by Silanes. Silicon 1, 111–124 (2009). https://doi.org/10.1007/s12633-009-9007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-009-9007-1

Keywords

Navigation