Skip to main content
Log in

Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, and M.Y. Lavrentiev, Numerical prediction of thermodynamic properties of iron-chromium alloys using semiempirical cohesive models: the state of the art, J. Nucl. Mater., 385(2009), No. 2, p. 268.

    Article  CAS  Google Scholar 

  2. G. Bonny, D. Terentyev, and L. Malerba, The hardening of iron-chromium alloys under thermal ageing: an atomistic study, J. Nucl. Mater., 385(2009), No. 2, p. 278.

    Article  CAS  Google Scholar 

  3. J.S. Cheon and I.S. Kim, Evaluation of thermal aging embrittlement in CF8 duplex stainless steel by small punch test, J. Nucl. Mater., 278(2000), No. 1, p. 96.

    Article  CAS  Google Scholar 

  4. F.A. Garner, J.M. McCarthy, K.C. Russell, and J.J. Hoyt, Spinodal-like decomposition of Fe-35Ni and Fe-Cr-35Ni alloys during irradiation or thermal aging, J. Nucl. Mater., 205(1993), No. 10, p. 411.

    Article  CAS  Google Scholar 

  5. S.L. Li, X.T. Wang, Y.L. Wang, and S.X. Li, Effects of thermal aging on micro-mechanical properties and impact fracture behavior of Z3CN20-09M stainless steels, Acta Metall. Sin., 47(2011), No. 6, p. 751.

    CAS  Google Scholar 

  6. S.L. Li, Y.L. Wang, S.X. Li, and X.T. Wang, Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels, Acta Metall. Sin., 46(2010), No. 10, p. 1186.

    Article  CAS  Google Scholar 

  7. S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, and X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater., 433(2013), No. 1–3, p. 41.

    Article  CAS  Google Scholar 

  8. F. Danoix and P. Auger, Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review, Mater. Charact., 44(2000), No. 1–2, p. 177.

    Article  CAS  Google Scholar 

  9. V.M. Lopez-Hirata, O. Soriano-Vargas, H.J. Rosales-Dorantes, and M.L.S. Muñoz, Phase decomposition in an Fe-40at.% Cr alloy after isothermal aging and its effect on hardening, Mater. Charact., 62(2011), No. 8, p. 789.

    Article  CAS  Google Scholar 

  10. T. Yamada, S. Okano, and H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater., 350(2006), No. 1, p. 47.

    Article  CAS  Google Scholar 

  11. S. Novy, P. Pareige, and C. Pareige, Atomic scale analysis and phase separation understanding in a thermally aged Fe-20at.%Cr alloy, J. Nucl. Mater., 384(2009), No. 2, p. 96.

    Article  CAS  Google Scholar 

  12. M.K. Miller, J.M. Hyde, M.G. Hetherington, A. Cerezo, G.D.W. Smith, and C.M. Elliott, Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — I. Introduction and methodology, Acta Metall. Mater., 43(1995), No. 9. p. 3385.

    Article  CAS  Google Scholar 

  13. J.M. Hyde, M.K. Miller, M.G. Hetherington, A. Cerezo, G.D.W. Smith, and C.M. Elliott, Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — II. Development of domain size and composition amplitude, Acta Metall. Mater., 43(1995), No. 9, p. 3403.

    Article  CAS  Google Scholar 

  14. J.M. Hyde, M.K. Miller, M.G. Hetherington, A. Cerezo, G.D.W. Smith, and C.M. Elliott, Spinodal decomposition in Fe-Cr alloys: experimental study at the atomic level and comparison with computer models — III. Development of morphology, Acta Metall. Mater., 43(1995), No. 9. p. 3415.

    Article  CAS  Google Scholar 

  15. O. Soriano-Vargas, E.O. Avila-Davila, V.M. Lopez-Hirata, N. Cayetano-Castro, and J.L. Gonzalez-Velazquez, Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys, Mater. Sci. Eng. A, 527(2010), No. 12, p. 2910.

    Article  Google Scholar 

  16. Y.S. Li, S.X. Li, and T.Y. Zhang, Effect of dislocations on spinodal decomposition in Fe-Cr alloys, J. Nucl. Mater., 395(2009), No. 1–3, p. 120.

    Article  CAS  Google Scholar 

  17. Y.S. Li, H. Zhu, L. Zhang, and X.L. Cheng, Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: a phase-field simulation, J. Nucl. Mater., 429(2012), No. 1–3, p. 13.

    Article  CAS  Google Scholar 

  18. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system: I. Interfacial free energy, J. Chem. Phys., 28(1958), No. 2, p. 258.

    Article  CAS  Google Scholar 

  19. J.W. Cahn, On spinodal decomposition, Acta Metall., 9(1961), No. 9, p. 795.

    Article  CAS  Google Scholar 

  20. J.O. Andersson and B. Sundman, Thermodynamic properties of the Cr-Fe system, Calphad, 11(1987), No. 1, p. 83.

    Article  CAS  Google Scholar 

  21. D. Raabe, Computational Materials Science: the Simulation of Materials, Microstructures and Properties, Wiley-VCH, 1998, p. 120.

    Book  Google Scholar 

  22. J. Tomiska, The system Fe-Ni-Cr: revision of the thermodynamic description, J. Alloys Compd., 379(2004), No. 1–2, p. 176.

    Article  CAS  Google Scholar 

  23. M. Honjo and Y. Saito, Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the cahn-hilliard equation, ISIJ Int., 40(2000), No. 9, p. 914.

    Article  CAS  Google Scholar 

  24. E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th edition, Oxford, 1998, p. 90.

    Google Scholar 

  25. B.J. Lee, J.H. Shim, and H.M. Park, A semi-empirical atomic potential for the Fe-Cr binary system, Calphad, 25(2001), No. 4, p. 527.

    Article  CAS  Google Scholar 

  26. B. Jönsson, Assessment of the mobilities of Cr, Fe and Ni in bcc Cr-Fe-Ni alloys, ISIJ Int., 35(1995), No. 11, p. 1415.

    Article  Google Scholar 

  27. J.O. Andersson and J. Agren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., 72(1992), No. 4, p. 1350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-tao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sx., Zhang, Hl., Li, Sl. et al. Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method. Int J Miner Metall Mater 20, 1067–1075 (2013). https://doi.org/10.1007/s12613-013-0835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0835-z

Keywords

Navigation