Skip to main content
Log in

Shape control technology during electrochemical synthesis of gold nanoparticles

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuCl4) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KNO3, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuCl4, respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ali Umar and M. Oyama, Formation of gold nanoplates on indium tin oxide surface: two-dimensional crystal growth from gold nanoseed particles in the presence of poly (vinylpyrrolidone), Cryst. Growth Des., 6(2006), p. 818.

    Article  CAS  Google Scholar 

  2. Y.G. Sun and Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298(2002), p. 2176.

    Article  CAS  Google Scholar 

  3. P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B, 106(2002), p. 7729.

    Article  CAS  Google Scholar 

  4. J.B. Jackson and N.J. Halas, Silver nanoshells: variations in morphologies and optical properties, J. Phys. Chem. B, 105(2001), p. 2743.

    Article  CAS  Google Scholar 

  5. Y.J. Xiong, B. Wiley, J.Y. Chen, Z.Y. Li, Y.D. Yin, and Y.N. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem. Int. Ed., 44(2005), p. 7913.

    Article  CAS  Google Scholar 

  6. B. Wiley, Y.G. Sun, B. Mayers, and Y.N. Xia, Shapecontrolled synthesis of metal nanostructures: the case of silver, Chem. Eur. J., 11(2005), p. 454.

    Article  CAS  Google Scholar 

  7. J.E. Millstone, S. Park, K.L. Shuford, L.D. Qin, G.C. Schatz, and C.A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc., 127(2005), p. 5312.

    Article  CAS  Google Scholar 

  8. S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, Biological synthesis of triangular gold nanoprisms, Nat. Mater., 3(2004), p. 482.

    Article  CAS  Google Scholar 

  9. B.S. Yin, H.Y. Ma, S.Y. Wang, and S.H. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone), J. Phys. Chem. B, 107(2003), p. 8898.

    Article  CAS  Google Scholar 

  10. N.R. Jana and X.G. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals, J.Am.Chem. Soc., 125(2003), p. 14280.

    Article  CAS  Google Scholar 

  11. E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J.R. Morante, B. Tian, T. Bo, and D. Zhao, Nanostructured metal oxides synthesized by hard template method for gas sensing applications, Sens. Actuators B, 109(2005), p. 57.

    Article  CAS  Google Scholar 

  12. Y.G. Sun, B. Gates, B. Mayers, and Y.N. Xia, Crystalline silver nanowires by soft solution processing, Nano Lett., 2(2002), p. 165.

    Article  CAS  Google Scholar 

  13. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, and G.Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone), Langmuir, 12(1996), p. 909.

    Article  CAS  Google Scholar 

  14. Y.G. Sun, B. Mayers, and Y.N. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 3(2003), p. 675.

    Article  CAS  Google Scholar 

  15. I. Haas, S. Shanmugam, and A. Gedanken, Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone), J. Phys. Chem. B, 110(2006), p. 16947.

    Article  CAS  Google Scholar 

  16. C. Kan, X.G. Zhu, and G.H. Wang, Single-crystalline gold microplates: synthesis, characterization, and thermal stability, J. Phys. Chem. B, 110(2006), p. 4651.

    Article  CAS  Google Scholar 

  17. S. Kundu, K. Wang, and H. Liang, Size-selective synthesis and catalytic application of polyelectrolyte encapsulated gold nanoparticles using microwave irradiation, J. Phys. Chem. C, 113(2009), p. 5157.

    Article  CAS  Google Scholar 

  18. D.K. Park, S.J. Lee, J.H. Lee, M.Y. Choi, and S.W. Han, Effect of polymeric stabilizers on the catalytic activity of Pt nanoparticles synthesized by laser ablation, Chem. Phys. Lett., 484(2010), p. 254.

    Article  CAS  Google Scholar 

  19. I. Pastoriza-Santos and L.M. Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF, Langmuir, 18(2002), p. 2888.

    Article  CAS  Google Scholar 

  20. C.E. Hoppe, M. Lazzari, I. Pardiñas-Blanco, and M.A. López-Quintela, One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent, Langmuir, 22(2006), p. 7027.

    Article  CAS  Google Scholar 

  21. Y.J. Xiong, I. Washio, J.Y. Chen, H. Cai, Z.Y. Li, and Y.N. Xia, Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions, Langmuir, 22(2006), p. 8563.

    Article  CAS  Google Scholar 

  22. W. Pan, X.K. Zhang, H.Y. Ma, and J.T. Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles, J. Phys. Chem. C, 112(2008), p. 2456.

    Article  CAS  Google Scholar 

  23. S.X. Huang, H.Y. Ma, X.K. Zhang, F.F. Yong, X.L. Feng, W. Pan, X.N. Wang, Y. Wang, and S.H. Chen, Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization, J. Phys. Chem. B, 109(2005), p. 19823.

    Article  CAS  Google Scholar 

  24. C. Xue, Z. Li, and C.A. Mirkin, Large-scale assembly of single-crystal silver nanoprism monolayers, Small, 1(2005), p. 513.

    Article  CAS  Google Scholar 

  25. D. Aherne, D.M. Ledwith, M. Gara, and J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature, Adv. Funct. Mater., 18(2008), p. 2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-yi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Xy., Cui, Cy., Cheng, Yw. et al. Shape control technology during electrochemical synthesis of gold nanoparticles. Int J Miner Metall Mater 20, 486–492 (2013). https://doi.org/10.1007/s12613-013-0755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0755-y

Keywords

Navigation