Skip to main content
Log in

Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

MoS2, MoSe2 and WSe2 thin flakes were fabricated by the standard micromechanical cleavage procedures. The thickness and the optical contrast of the atomic thin dichalcogenide flakes on SiO2/Si substrates were measured by atomic force microscopy (AFM) and spectroscopic ellipsometer. A rapid and nondestructive method by using reflection spectra was proposed to identify the layer number of 2D layered transition metal dichalcogenides on SiO2 (275 nm)/Si substrates. The contrast spectra of 2D nanosheets with different layer numbers are in agreement with theoretical calculations based on Fresnel’s law, indicating that this method provides an unambiguous and nondestructive contrast spectra fingerprint for identifying single- and few-layered transition metal dichalcogenides. The results will greatly help in fundamental research and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102(30):10451.

    Article  Google Scholar 

  3. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, Hill EW, Novoselov KS, Watanabe K, Taniguchi T, Geim AK, Blake P. Hunting for monolayer boron nitride: optical and Raman signatures. Small. 2011;7(4):465.

    Article  Google Scholar 

  4. Castellanos-Gomez A, Wojtaszek M, Tombros N, Agraït N, van Wees BJ, Rubio-Bollinger G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small. 2011;7(17):2491.

    Google Scholar 

  5. Pacile D, Meyer JC, Girit CO, Zettl A. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett. 2008;92(13):133107.

    Article  Google Scholar 

  6. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5(10):722.

    Article  Google Scholar 

  7. Castellanos-Gomez A, Agraït N, Rubio-Bollinger G. Optical identification of atomically thin dichalcogenide crystals. Appl Phys Lett. 2010;96(21):213116.

    Article  Google Scholar 

  8. Late DJ, Liu B, Matte HSSR, Rao CNR, Dravid VP. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv Funct Mater. 2012;22(9):1894.

    Article  Google Scholar 

  9. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147.

    Article  Google Scholar 

  10. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10(4):1271.

    Article  Google Scholar 

  11. Benameur MM, Radisavljevic B, Héron JS, Sahoo S, Berger H, Kis A. Visibility of dichalcogenide nanolayers. Nanotechnology. 2011;22(12):125706.

    Article  Google Scholar 

  12. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372.

    Article  Google Scholar 

  13. Koenig SP, Doganov RA, Schmidt H, Castro Neto AH, Ozyilmaz B. Electric field effect in ultrathin black phosphorus. Appl Phys Lett. 2014;104(10):103106.

    Article  Google Scholar 

  14. Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014;14(5):2884.

    Article  Google Scholar 

  15. Podzorov V, Gershenson ME, Kloc C, Zeis R, Bucher E. Novel high-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett. 2004;84(17):3301.

    Article  Google Scholar 

  16. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun. 2014;5:5678.

    Article  Google Scholar 

  17. Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett. 2012;101(22):223104.

    Article  Google Scholar 

  18. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW. Synthesis of large-area mos2 atomic layers with chemical vapor deposition. Adv Mater. 2012;24(17):2320.

    Article  Google Scholar 

  19. Shi Y, Zhou W, Lu AY, Fang W, Lee YH, Hsu AL, Kim SM, Kim KK, Yang HY, Li LJ, Idrobo JC, Kong J. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012;12(6):2784.

    Article  Google Scholar 

  20. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340(6139):1226419.

    Article  Google Scholar 

  21. Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small. 2013;9(11):1974.

    Article  Google Scholar 

  22. Li H, Wu J, Huang X, Lu G, Yang J, Lu X, Xiong Q, Zhang H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano. 2013;7(11):10344.

    Article  Google Scholar 

  23. Childres I, Jauregui LA, Foxe M, Tian J, Jalilian R, Jovanovic I, Chen YP. Effect of electron-beam irradiation on graphene field effect devices. Appl Phys Lett. 2010;97(17):173109.

    Article  Google Scholar 

  24. Wu RJ, Odlyzko ML, Mkhoyan KA. Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Ultramicroscopy. 2014;147:8.

    Article  Google Scholar 

  25. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 2010;4(5):2695.

    Article  Google Scholar 

  26. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.

    Article  Google Scholar 

  27. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK. Making graphene visible. Appl Phys Lett. 2007;91(6):063124.

    Article  Google Scholar 

  28. Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007;7(9):2758.

    Article  Google Scholar 

  29. Jung I, Pelton M, Piner R, Dikin DA, Stankovich S, Watcharotone S, Hausner M, Ruoff RS. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007;7(12):3569.

    Article  Google Scholar 

  30. Wang YP, Zhou HJ, Zhao GH, Xia TL, Wang L, Wang L, Zhang LY. Rapidly counting atomic planes of ultra-thin MoSe2 nanosheets (1 ≤ n≤4) on SiO2/Si substrate. Rare Met. 2016;35(8):632.

    Article  Google Scholar 

  31. Ouyang WG, Liu XZ, Li QY, Zhang YY, Yang JR, Zheng QS. Optical methods for determining thickness of few-layer graphene flakes. Nanotechnology. 2013;24(50):505701.

    Article  Google Scholar 

  32. Chen H, Fei W, Zhou J, Miao C, Guo W. Layer identification of colorful black phosphorus. Small. 2017;13(5):1602336.

    Article  Google Scholar 

  33. Jung I, Rhyee JS, Son JY, Ruoff RS, Rhee KY. Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology. 2012;23(2):25708.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11304381 and 11174366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JP., Wang, L. & Zhang, LY. Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides. Rare Met. 36, 698–703 (2017). https://doi.org/10.1007/s12598-017-0927-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0927-4

Keywords

Navigation