Skip to main content
Log in

Damping controller design for nanopositioners: A hybrid reference model matching and virtual reference feedback tuning approach

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Conventionally, fixed-structure feedback controllers are designed by model-based approaches. However, such controllers are not necessarily ideal and optimal when connecting with the actual plant because of the existence of modeling uncertainty. In this paper, a paralleled damping controller as well as a novel hybrid reference model matching (RMM) and virtual reference feedback tuning (VRFT) approach for parameters’ tuning of the controller is presented. The composite damping controller for piezo-actuated nanopositioners is fixed-structure and low-order that uses a high-gain notch filter and a high-pass resonant controller to damp the first resonant peak. The proposed hybrid tuning approach combines an identified system model and a set of experimental input/output data into the parameters’ optimization of the proposed composite damping controller. The proposed hybrid approach simplifies the tuning process by decreasing the number of the parameters in the initial values’ choosing stage from the whole nine to four. Besides, the application of experimental data improves rejection of model uncertainty. A set of optimal parameters in the controller is obtained using the proposed hybrid design approach. Experimental results with comparisons to built-in PID controller are presented to show the effectiveness of the composite damping controller optimized via the hybrid approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VRFT:

Virtual Reference Feedback Tuning

RMM:

Reference Model Matching

RC:

Resonant Control

IRC:

Integral Resonant Control

SISO:

Single-Input Single-Output

MIMO:

Multi-Input Multi-Output

References

  1. Yong, Y., Moheimani, S. R., Kenton, B. J., and Leang, K., “High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues,” Review of scientific instruments, Vol. 83, No. 12, Paper No. 121101, 2012.

    Google Scholar 

  2. Hansen, H. N., Carneiro, K., Haitjema, H., and De Chiffre, L., “Dimensional Micro and Nano Metrology,” CIRP Annals-Manufacturing Technology, Vol. 55, No. 2, pp. 721–743, 2006.

    Article  Google Scholar 

  3. Eleftheriou, E., Antonakopoulos, T., Binnig, G., Cherubini, G., Despont, M., et al., “Millipede-A Mems-Based Scanning-Probe Data-Storage System,” IEEE Transactions on Magnetics, Vol. 39, No. 2, pp. 938–945, 2003.

    Article  Google Scholar 

  4. Choi, K.-B. and Lee, J. J., “Passive Compliant Wafer Stage for Single-Step Nano-Imprint Lithography,” Review of Scientific Instruments, Vol. 76, No. 7, Paper No. 075106, 2005.

    Google Scholar 

  5. Kang, D. and Gweon, D., “Development of Flexure Based 6-Degrees of Freedom Parallel Nano-Positioning System with Large Displacement,” Review of Scientific Instruments, Vol. 83, No. 3, Paper No. 035003, 2012.

    Google Scholar 

  6. Zareinejad, M., Ghidary, S. S., Rezaei, S. M., and Abdullah, A., “Precision Control of a Piezo-Actuated Micro Telemanipulation System,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 1, pp. 55–65, 2010.

    Article  Google Scholar 

  7. Schitter, G. and Rost, M. J., “Scanning Probe Microscopy at Video-Rate,” Materials Today, Vol. 11, pp. 40–48, 2008.

    Article  Google Scholar 

  8. Zou, Q., Leang, K. K., Sadoun, E., Reed, M., and Devasia, S., “Control Issues in High-Speed AFM for Biological Applications: Collagen Imaging Example,” Asian Journal of Control, Vol. 6, No. 2, pp. 164–178, 2004.

    Article  Google Scholar 

  9. Wang, Z., Witthauer, A., Zou, Q., Kim, G.-Y., and Faidley, L., “Control of a Magnetostrictive-Actuator-Based Micromachining System for Optimal High-Speed Microforming Process,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 3, pp. 1046–1055, 2015.

    Article  Google Scholar 

  10. Eielsen, A. A., Vagia, M., Gravdahl, J. T., and Pettersen, K. Y., “Damping and Tracking Control Schemes for Nanopositioning,” IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 2, pp. 432–444, 2014.

    Article  Google Scholar 

  11. Das, S. K., Pota, H. R., and Petersen, I. R., “A Mimo Double Resonant Controller Design for Nanopositioners,” IEEE Transactions on Nanotechnology, Vol. 14, No. 2, pp. 224–237, 2015.

    Article  Google Scholar 

  12. Das, S. K., Pota, H. R., and Petersen, I. R., “Damping Controller Design for Nanopositioners: A Mixed Passivity, Negative-Imaginary, and Small-Gain Approach,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 1, pp. 416–426, 2015.

    Article  Google Scholar 

  13. Das, S. K., Pota, H. R., and Petersen, I. R., “Multivariable Negative-Imaginary Controller Design for Damping and Cross Coupling Reduction of Nanopositioners: A Reference Model Matching Approach,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 6, pp. 3123–3134, 2015.

    Article  Google Scholar 

  14. Shan, Y. and Leang, K. K., “Design and Control for High-Speed Nanopositioning: Serial-Kinematic Nanopositioners and Repetitive Control for Nanofabrication,” IEEE Control Systems, Vol. 33, No. 6, pp. 86–105, 2013.

    Article  MathSciNet  Google Scholar 

  15. Huang, S.-C. and Dao, T.-P., “Design and Computational Optimization of a Flexure-Based XY Positioning Platform Using FEA-Based Response Surface Methodology,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 8, pp. 1035–1048, 2016.

    Article  Google Scholar 

  16. Liu, P.-B., Yan, P., Zhang, Z., and Leng, T.-T., “Flexure-Hinges Guided Nano-Stage for Precision Manipulations: Design, Modeling and Control,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2245–2254, 2015.

    Article  Google Scholar 

  17. Li, Y., Xiao, S., Xi, L., and Wu, Z., “Design, Modeling, Control and Experiment for a 2-DOF Compliant Micro-Motion Stage,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 4, pp. 735–744, 2014.

    Article  Google Scholar 

  18. Mahmood, I. A. and Moheimani, S. O. R., “Making a Commercial Atomic Force Microscope More Accurate and Faster Using Positive Position Feedback Control,” Review of Scientific Instruments, Vol. 80, No. 6, Paper No. 063705, 2009.

    Google Scholar 

  19. Clayton, G. M., Tien, S., Leang, K. K., Zou, Q., and Devasia, S., “A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM,” Journal of Dynamic Systems, Measurement, and Control, Vol. 131, No. 6, Paper No. 061101, 2009.

    Google Scholar 

  20. Leang, K. K. and Devasia, S., “Design of Hysteresis-Compensating Iterative Learning Control for Piezo-Positioners: Application to Atomic Force Microscopes,” Mechatronics, Vol. 16, No. 3, pp. 141–158, 2006.

    Article  Google Scholar 

  21. Fleming, A. J. and Wills, A. G., “Optimal Periodic Trajectories for Band-Limited Systems,” IEEE Transactions on Control Systems Technology, Vol. 17, No. 3, pp. 552–562, 2009.

    Article  Google Scholar 

  22. Butterworth, J. A., Pao, L. Y., and Abramovitch, D. Y., “A Comparison of Control Architectures for Atomic Force Microscopes,” Asian Journal of Control, Vol. 11, No. 2, pp. 175–181, 2009.

    Article  Google Scholar 

  23. Salapaka, S., Sebastian, A., Cleveland, J. P., and Salapaka, M. V., “High Bandwidth Nano-Positioner: A Robust Control Approach,” Review of Scientific Instruments, Vol. 73, No. 9, pp. 3232–3241, 2002.

    Article  Google Scholar 

  24. Aphale, S. S., Ferreira, A., and Moheimani, S. R., “A Robust Loop-Shaping Approach to Fast and Accurate Nanopositioning,” Sensors and Actuators A: Physical, Vol. 204, pp. 88–96, 2013.

    Article  Google Scholar 

  25. Lee, C. and Salapaka, S. M., “Fast Robust Nanopositioning–A Linear-Matrix-Inequalities-Based Optimal Control Approach,” IEEE/ASME Transactions on Mechatronics, Vol. 14, No. 4, pp. 414–422, 2009.

    Article  Google Scholar 

  26. Ratnam, M., Bhikkaji, B., Fleming, A., and Moheimani, S., “PPF Control of a Piezoelectric Tube Scanner,” Proc. of 44th IEEE Conference on Decision and Control Conference (CDC-ECC), pp. 1168–1173, 2005.

    Chapter  Google Scholar 

  27. Aphale, S. S., Bhikkaji, B., and Moheimani, S. R., “Minimizing Scanning Errors in Piezoelectric Stack-Actuated Nanopositioning Platforms,” IEEE Transactions on Nanotechnology, Vol. 7, No. 1, pp. 79–90, 2008.

    Article  Google Scholar 

  28. Bhikkaji, B., Ratnam, M., Fleming, A. J., and Moheimani, S. O. R., “High-Performance Control of Piezoelectric Tube Scanners,” IEEE Transactions on Control Systems Technology, Vol. 15, No. 5, pp. 853–866, 2007.

    Article  Google Scholar 

  29. Fairbairn, M. and Moheimani, S., “Resonant Control of an Atomic Force Microscope Micro-Cantilever for Active Q Control,” Review of Scientific Instruments, Vol. 83, No. 8, Paper No. 083708, 2012.

    Google Scholar 

  30. Das, S. K., Pota, H. R., and Petersen, I. R., “Resonant Controller Design for a Piezoelectric Tube Scanner: A Mixed Negative-Imaginary and Small-Gain Approach,” IEEE Transactions on Control Systems Technology, Vol. 22, No. 5, pp. 1899–1906, 2014.

    Article  Google Scholar 

  31. Fleming, A. J., Aphale, S. S., and Moheimani, S. R., “A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages,” IEEE Transactions on Nanotechnology, Vol. 9, No. 4, pp. 438–448, 2010.

    Article  Google Scholar 

  32. Bhikkaji, B. and Moheimani, S. R., “Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning,” IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 5, pp. 530–537, 2008.

    Article  Google Scholar 

  33. Namavar, M., Fleming, A. J., Aleyaasin, M., Nakkeeran, K., and Aphale, S. S., “An Analytical Approach to Integral Resonant Control of Second-Order Systems,” IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 2, pp. 651–659, 2014.

    Article  Google Scholar 

  34. Leang, K. K. and Devasia, S., “Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators,” IEEE Transactions on Control Systems Technology, Vol. 15, No. 5, pp. 927–935, 2007.

    Article  Google Scholar 

  35. Formentin, S., Heusden, K., and Karimi, A., “A Comparison of Model-Based and Data-Driven Controller Tuning,” International Journal of Adaptive Control and Signal Processing, Vol. 28, No. 10, pp. 882–897, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  36. Formentin, S., Savaresi, S., and Del Re, L., “Non-Iterative Direct Data-Driven Controller Tuning for Multivariable Systems: Theory and Application,” IET Control Theory & Applications, Vol. 6, No. 9, pp. 1250–1257, 2012.

    Article  MathSciNet  Google Scholar 

  37. Wellstead, P. E., Edmunds, J. M., Prager, D., and Zanker, P., “Self-Tuning Pole/Zero Assignment Regulators,” International Journal of Control, Vol. 30, No. 1, pp. 1–26, 1979.

    Article  MATH  Google Scholar 

  38. Hjalmarsson, H., Gevers, M., Gunnarsson, S., and Lequin, O., “Iterative Feedback Tuning: Theory and Applications,” IEEE Control Systems, Vol. 18, No. 4, pp. 26–41, 1998.

    Article  Google Scholar 

  39. Karimi, A., Mišković, L., and Bonvin, D., “Iterative Correlation-Based Controller Tuning,” International Journal of Adaptive Control And Signal Processing, Vol. 18, No. 8, pp. 645–664, 2004.

    Article  MATH  Google Scholar 

  40. Campi, M. C., Lecchini, A., and Savaresi, S. M., “Virtual Reference Feedback Tuning: A Direct Method for the Design of Feedback Controllers,” Automatica, Vol. 38, No. 8, pp. 1337–1346, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  41. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E., “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM Journal on Optimization, Vol. 9, No. 1, pp. 112–147, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  42. Butterworth, J. A., Pao, L. Y., and Abramovitch, D. Y., “A Comparison of ILC Architectures for Nanopositioners with Applications to AFM Raster Tracking,” Proc. of American Control Conference (ACC), pp. 2266–2271, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, J., Feng, Z., Ming, M. et al. Damping controller design for nanopositioners: A hybrid reference model matching and virtual reference feedback tuning approach. Int. J. Precis. Eng. Manuf. 19, 13–22 (2018). https://doi.org/10.1007/s12541-018-0002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-018-0002-6

Keywords

Navigation