Skip to main content
Log in

A computational model for genetic and epigenetic signals in colon cancer

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Cancer, a class of diseases, characterized by abnormal cell growth, has one of the highest overall death rates world-wide. Its development has been linked to aberrant genetic and epigenetic events, affecting the regulation of key genes that control cellular mechanisms. However, a major issue in cancer research is the lack of precise information on tumour pathways; therefore, the delineation of these and of the processes underlying disease proliferation is an important area of investigation. A computational approach to modelling malignant system events can help to improve understanding likely “triggers”, i.e. initiating abnormal micro-molecular signals that occur during cancer development. Here, we introduce a network-based model for genetic and epigenetic events observed at different stages of colon cancer, with a focus on the gene relationships and tumour pathways. Additionally, we describe a case study on tumour progression recorded for two gene networks on colon cancer, carcinoma in situ. Our results to date showed that tumour progression rate is higher for a small, closely-associated network of genes than for a larger, less-connected set; thus, disease development depends on assessment of network properties. The current work aims to provide improved insight on the way in which aberrant modifications characterize cancer initiation and progression. The framework dynamics are described in terms of interdependencies between three main layers: genetic and epigenetic events, gene relationships and cancer stage levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, N., Li, Q., Mohan, A.L., Baylin, S.B., Issa, J.P.J. 1998. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58, 5489–5494.

    PubMed  CAS  Google Scholar 

  2. Allis, C.D., Jenuwein, T., Reinberg, D., Caparros, M.L. 2007. Epigenetics. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  3. Barat, A., Ruskin, H.J. 2010. A manually curated novel knowledge management system for genetic. Open Colorectal Canc J 3, 36–46.

    Google Scholar 

  4. Bast, R.C., Hennessy, B., Mills, G.B. 2009. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9, 415–428.

    Article  PubMed  CAS  Google Scholar 

  5. Bjornsson, H.T., Fallin, D.M., Feinberg, A.P. 2004. An integrated epigenetic and genetic approach to common human disease. Trends Genet 20, 350–358.

    Article  PubMed  CAS  Google Scholar 

  6. Bock, C., Lengauer, T. 2008. Computational epigenetics. Bioinformatics 24, 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Brenner, H., Hoffmeister, M., Arndt, V., Haug, U. 2007. Gender differences in colorectal cancer: Implications for age at initiation of screening. Br J Cancer 96, 828–831.

    Article  PubMed  CAS  Google Scholar 

  8. Burnside, E.S., Rubin, D.L., Fine, J.P., Shachter, R.D., Sisney, G.A, Leung, W.K. 2006. Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: Initial experience. Radiology 240, 666–673.

    Article  PubMed  Google Scholar 

  9. Carrillo-Infante, C., Abbadessa, G., Bagella, L., Giordano, A. 2007. Viral infections as a cause of cancer. Int J Oncol 30, 1521–1528.

    PubMed  CAS  Google Scholar 

  10. Cedar, H., Bergman, Y. 2009. Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Genet 10, 295–304.

    Article  PubMed  CAS  Google Scholar 

  11. Coleman, W.B., Rivenbark, A.G. 2006. Quantitative DNA methylation analysis: The promise of highthroughput epigenomic diagnostic testing in human neoplastic disease. J Mol Diagn 8, 152–156.

    Article  PubMed  CAS  Google Scholar 

  12. Dworkin, A.M., Huang, T.H.M., Toland, A.E. 2009. Epigenetic alterations in the breast: Implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol 19, 165–171.

    Article  PubMed  CAS  Google Scholar 

  13. Egger, G., Liang, G., Aparicio, A., Jones, P.A. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463.

    Article  PubMed  CAS  Google Scholar 

  14. Fraga, M.F., Agrelo, R., Esteller, M. 2007. Cross-talk between aging and cancer. Ann NY Acad Sci 1100, 60–74.

    Article  PubMed  CAS  Google Scholar 

  15. Fraga, M.F., Esteller, M. 2007. Epigenetics and aging: The targets and the marks. Trends Genet 23, 413–418.

    Article  PubMed  CAS  Google Scholar 

  16. Frank, S.A. 2007. Dynamics of Cancer: Incidence, Inheritance, and Evolution. Princeton University Press, Oxfordshire, New Jersey.

    Google Scholar 

  17. Heckerman, D. 2008. A tutorial on learning with Bayesian networks. In: Holmes, D.E. and Lakhmi, C.J. (Eds.) Innovations in Bayesian Networks. Springer, Berlin Heidelberg, 33–82.

    Chapter  Google Scholar 

  18. Hemminki, K., Zhang, H., Czene, K. 2003. Familial and attributable risks in cutaneous melanoma: Effects of proband and age. J Invest Dermatol 120, 217–223.

    Article  PubMed  CAS  Google Scholar 

  19. Herman, J.G., Baylin, S.B. 2003. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042–2054.

    Article  PubMed  CAS  Google Scholar 

  20. Hou, L., Zhang, X., Wang, D., Baccarelli, A. 2012. Environmental chemical exposures and human epigenetics. Int J Epidemiol 41, 79–105.

    Article  PubMed  Google Scholar 

  21. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M. 2003. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453.

    Article  PubMed  CAS  Google Scholar 

  22. Jelinic, P., Shaw, P. 2007. Loss of imprinting and cancer. J Pathol 211, 261–268.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, P.A., Baylin, S.B. 2002. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.

    Article  PubMed  CAS  Google Scholar 

  24. Karpf, A.R., Jones, D.A. 2002. Reactivating the expression of methylation silenced genes in human cancer. Oncogene 21, 5496–5503.

    Article  PubMed  CAS  Google Scholar 

  25. Knudson, A.G. 2001. Two genetic hits (more or less) to cancer. Nat Rev Cancer 1, 157–162.

    Article  PubMed  CAS  Google Scholar 

  26. Laird, P.W. 2003. The power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253–266.

    Article  PubMed  CAS  Google Scholar 

  27. Lim, S.J., Tan, T.W., Tong, J.C. 2010. Computational Epigenetics: The new scientific paradigm. Bioinformation 4, 331–337.

    Article  PubMed  Google Scholar 

  28. Oakeley, E.J. 1999. DNA methylation analysis: A review of current methodologies. Pharmacol Ther 84, 389–400.

    Article  PubMed  CAS  Google Scholar 

  29. Ogino, S., Kawasaki, T., Brahmandam, M., Cantor, M., Kirkner, G.J., Spiegelman, D., Makrigiorgos, G.M., Weisenberger, D.J., Laird, P.W., Loda, M. 2006. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8, 209–217.

    Article  PubMed  CAS  Google Scholar 

  30. Ongenaert, M., Van Neste, L., De Meyer, T., Menschaert, G., Bekaert, S., Van Criekinge, W. 2008. PubMeth: A cancer methylation database combining text-mining and expert annotation. Nucl Acid Res 36, D842–D846.

    Article  CAS  Google Scholar 

  31. Perrin, D., Ruskin, H.J., Niwa, T. 2010. Cell typedependent, infection-induced, aberrant DNA methylation in gastric cancer. J Theor Biol 264, 570–577.

    Article  PubMed  CAS  Google Scholar 

  32. Raghavan, K., Ruskin, H.J. 2011. Computational epigenetic micromodel-framework for parallel implementation and information flow. In: Proceedings of The Eighth International Conference on Complex Systems, Boston, USA, 340–353.

    Google Scholar 

  33. Risch, A., Plass, C. 2008. Lung cancer epigenetics and genetics. Int J Cancer 123, 1–7.

    Article  PubMed  CAS  Google Scholar 

  34. Safran, M., Dalah, I., Alexander, J., Rosen, N., Stein, T.I., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., Sirota-Madi, A., Olender, T., Golan, Y., Stelzer, G., Harel, A., Lancet, D. 2010. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010, DOI: 10.1093/database/baq020.

    Google Scholar 

  35. Samaras, V., Rafailidis, P.I., Mourtzoukou, E.G., Peppas, G., Falagas, M.E. 2010. Chronic bacterial and parasitic infections and cancer: A review. J Infect Dev Ctries 4, 267–281.

    PubMed  Google Scholar 

  36. Steele, R.J.C., Thompson, A.M., Hall, P.A., Lane, D.P. 1998. The p53 tumour suppressor gene. Br J Surg 85, 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  37. Vogelstein, B., Kinzler, K.W. 2004. Cancer genes and the pathways they control. Nat Med 10, 789–799.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Afrodita Roznovăţ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roznovăţ, I.A., Ruskin, H.J. A computational model for genetic and epigenetic signals in colon cancer. Interdiscip Sci Comput Life Sci 5, 175–186 (2013). https://doi.org/10.1007/s12539-013-0172-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0172-y

Key words

Navigation