Skip to main content
Log in

WDRP, a DWD protein component of CUL4-based E3 ligases, acts as a receptor of CDPK-related protein kinase 5 to mediate kinase degradation in Arabidopsis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

CRK5 is a member of the Arabidopsis thaliana Ca2+-dependent protein kinase-related kinase family. Here, a yeast two-hybrid screen was performed with a truncated form of AtCRK5 as bait to identify interacting proteins and determine its physiological roles. One gene encoding the DWD protein WDRP was isolated. Furthermore, in vitro and in vivo co-immunoprecipitation results strongly supported that these two proteins interact with each other. Using a cell-free degradation assay, we also established that CRK5 was an unstable protein that was degraded through the proteasome pathway. The rate of CRK5 degradation was delayed in a WDRP knockout line. On the other hand, the degradation of CRK5 mediated by WDRP might not affect the phosphorylation of PIN2 by CRK5. Overall, we demonstrated that AtCRK5 interacted with a DWD protein, AtWDRP; the protein AtWDRP targets the kinase for ubiquitin-dependent degradation. Therefore, this report describes a new kinase regulation pathway for CRK family proteins in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biedermann S, Hellmann H (2011) WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci 16:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bjerkan KN, Jung-Roméo S, Jürgens G, Genschik P, Grini PE (2012) Arabidopsis WD repeat domain55 Interacts with DNA DAMAGED BINDING PROTEIN1 and is required for apical patterning in the embryo. Plant Cell 24:1013–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): A novel mode of calmodulin-target recognition. J Mol Biol 357:400–410

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, Zhang Y, Li J, Lee JH, Zhu D, Deng XW (2010) Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22:108–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, Zheng N, Deng XW (2006) Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18:1991–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Hellmann H (2013) Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant 6:1388–1404

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Lee L-Y, Vyas S, Glick E, Chen M-H, Vainstein A, Gafni, Y, Gelvin SB, Tzfira T (2006) Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF 1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coello P, Hirano E, Hey SJ, Muttucumaru N, Martinez-Barajas E, Parry MA, Halford NG 2012) Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. J Exp Bot 63:913–924

    Article  CAS  PubMed  Google Scholar 

  • Cook GS, Grønlund AL, Siciliano I, Spadafora N, Amini M, Herbert RJ, Bitonti MB, Graumann K, Francis D, Rogers HJ (2013) Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery. J Exp Bot 64:2093–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zélicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, Frei Dit Frey N, Leonhardt N, Pateyron S, Gwinner F, Tamby JP, Ortiz-Masia D, Marcote MJ, Hirt H, Colcombet J (2015) Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J 82:232–244

    Article  CAS  PubMed  Google Scholar 

  • Du W, Wang Y, Liang SP, Lu Y-T (2005) Biochemical and expression analysis of an Arabidopsis calcium-dependent protein kinaserelated kinase. Plant Sci 168:1181–1192

    Article  CAS  Google Scholar 

  • Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M, Cognat V, Brukhin V, Koncz C, Grossniklaus U, Molinier J, Genschik P (2011) The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J 30:731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc’h N, Ducos E (2016) ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. Plant Cell Environ 39:185–198

    Article  CAS  PubMed  Google Scholar 

  • Fragoso S, Espíndola L, Páez-Valencia J, Gamboa A, Camacho Y, Martínez-Barajas E, Coello P (2009) SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiol 149:1906–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furniss JJ, Spoel SH (2015) Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. Front Plant Sci 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Furumoto T, Ogawa N, Hata S, Izui K (1996) Plant calcium-dependent protein kinase-related kinases (CRKs) do not require calcium for their activities. FEBS Lett 396:147–151

    Article  CAS  PubMed  Google Scholar 

  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2010) Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci USA 107:20132–20137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmon AC (2003) Calcium-regulated protein kinases of plants. Gravit. Space Biol Bull 16:83–90

    PubMed  Google Scholar 

  • He YJ, McCall CM, Hu J, Zeng Y, Xiong Y (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20:2949–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPKSnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, Zhang X, Loake GJ, Zhang T, Huang J, Yang Y (2014) Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 26:4763–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua W, Zhang L, Liang S, Jones RL, Lu Y-T (2004) A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering, J Biol Chem 279:31483–31494

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • Ingram JR, Knockenhauer KE, Markus BM, Mandelbaum J, Ramek, A, Shan Y, Shaw DE, Schwartz TU, Ploegh HL, Lourido S (2015) Allosteric activation of apicomplexan calcium-dependent protein kinases. Proc Natl Acad Sci USA 112:e4975-4984

    Article  Google Scholar 

  • Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y (2014) Scaffold function of Ca2+-dependent protein kinase: tobacco Ca2+-DEPENDENT PROTEIN KINASE1 transfers 14-3-3 to the substrate REPRESSION OF SHOOT GROWTH after phosphorylation. Plant Physiol 165:1737–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B, Jeong YJ, Corvalán C, Fujioka S, Cho S, Park T, Choe S (2014) Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J 77:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z (2012) The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A, Pech JC, Latché A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripeningassociated tomato CDPK-related kinase. J Exp Bot 56:25–35

    CAS  PubMed  Google Scholar 

  • Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26:775–780

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Terzaghi W, Gusmaroli G, Charron JB, Yoon HJ, Chen H, He YJ, Xiong Y, Deng XW (2008) Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20:152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Terzaghi W, Deng XW (2011) DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci 180:352–357

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW (2010) DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22:1716–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RJ, Hua W, Lu Y-T (2006) Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem Biophys Res Commun 342:119–126

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta 1833:1582–1589

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Stone SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase selfubiquitination and proteasomal degradation. Plant Cell 22:2630–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Stone SL (2013) Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288:20267–20279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signaling network and is degraded by the ubiquitinproteasome system. J Exp Bot 64:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  • Mitula F, Tajdel M, Ciesla A, Kasprowicz-Maluski A, Kulik A, Babula-Skowronska D, Michalak M, Dobrowolska G, Sadowski J, Ludwików A (2015) Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway. Plant Cell Physiol 56:2351–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori I, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15:473–479

    Article  CAS  Google Scholar 

  • Németh K, Salchert K, Putnoky P, Bhalerao R, Koncz-Kálmán Z, Stankovic-Stangeland B, Bakó L, Mathur J, Okrész L, Stabel S, Geigenberger P, Stitt M, Rédei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12:3059–3073

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T (2015) Members of the plant CRK superfamily are capable of trans-and autophosphorylation of tyrosine residues. J Biol Chem 290:16665–16677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilson SE, Assmann SM (2010) The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. Plant Physiol 152:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offenborn JN, Waadt R, Kudla J (2015) Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation. New Phytol 208:269–279

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Ritter A, Goossens J, Durand AN, Liu H, Gu Y, Geerinck J, Boter M, Vanden Bossche R, De Clercq R, van Leene J, Gevaert K, De Jaeger G, Solano R, Stone S, Innes RW, Callis J, Goossens A (2015) The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability. Plant Physiol 169:1405–1417

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci USA 108:3430–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J, Li JZ, Wu J, Zhou HM, Li P (2008) Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brownadipose tissue. EMBO J 27:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigó G, Ayaydin F, Tietz O, Zsigmond L, Kovács H, Páy A, Salchert K, Darula Z, Medzihradszky KF, Szabados L, Palme K, Koncz C, Cséplo Á (2013) Inactivation of plasma membrane–localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronnebaum SM, Patterson C, Schisler JC (2014) hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 28:1602–1615

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC (2014) CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. Plant Physiol 166:314–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW (2014) ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbach Y, Hennig L (2014) Arabidopsis MSI1 functions in photoperiodic flowering time control. Front Plant Sci 5:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Waadt R, Schl€ucking K, Schroeder JI, Kudla J (2014) Protein fragmentbimolecular fluorescence complementation analyses for the in vivo study ofprotein–protein interactions and cellular protein complex localizations. Arabidopsis Protocols, Methods in Molecular Biology 1062:629–658

    Article  PubMed  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, and Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Deng XW (2011) Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 21:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liang S, Xie QG, Lu Y-T (2004) Characterization of a calmodulin-regulated Ca2+-dependent-protein-kinase-related protein kinase, AtCRK1, from Arabidopsis. Biochem J 383:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Shi Y (2014) Progress in structural biology of 26S proteasome. Scientia Sinica Vitae 44:965–974

    Article  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liang S, Lu Y-T (2001) Characterization, physical location, and expression of the genes encoding calcium/calmodulindependent protein kinases in maize (Zea mays L.), Planta 213:556–564

  • Wernimont AK, Artz JD, Finerty P, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F, Chau I, Lourido S, Sibley LD, Hui R (2010) Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat Struct Mol Biol 17:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Chen J, Wang Q, Yang Y (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calciumdependent protein kinase in rice. Plant Cell 26:3077–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Du L, Poovaiah BW (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9:e973818

    Article  Google Scholar 

  • Zhang L, Liu BF, Liang S, Jones RL, Lu Y-T (2002) Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J 368:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lu Y-T (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, HJ., Guo, Y., Wang, JQ. et al. WDRP, a DWD protein component of CUL4-based E3 ligases, acts as a receptor of CDPK-related protein kinase 5 to mediate kinase degradation in Arabidopsis. J. Plant Biol. 59, 627–638 (2016). https://doi.org/10.1007/s12374-016-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0419-3

Keywords

Navigation