Skip to main content
Log in

Niabella ginsenosidivorans sp. nov., isolated from compost

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-reaction negative, strictly aerobic, non-motile, orange colored, and rod-shaped bacterium (designated BS26T) isolated from compost, was characterized by a polyphasic approach to clarify its taxonomic position. Strain BS26T was observed to grow optimally at 25–30°C and at pH 7.0 on R2A and nutrient media. Strain BS26T showed ß-glucosidase activity that was responsible for its ability to transform ginsenoside Rb1 (one of the active components of ginseng) to ginsenoside compound-K (C-K). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BS26T belongs to the genus Niabella of family Chitinophagaceae and was most closely related to Niabella soli DSM 19437T (94.5% similarity), N. yanshanensis CCBAU 05354T (94.3%), and N. aurantiaca DSM 17617T (93.8%). The G+C content of genomic DNA was 47.3 mol%. Chemotaxonomic data [predominant isoprenoid quinone-MK-7, major fatty acids–iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (comprising C16:1 ?7c and/or C16:1 ?6c)] supported the affiliation of strain BS26T to the genus Niabella. However, strain BS26T could be differentiated genotypically and phenotypically from the recognized species of the genus Niabella. The novel isolate therefore represents a novel species, for which the name Niabella ginsenosidivorans sp. nov. is proposed, with the type strain BS26T (=KACC 16620T =JCM 18199T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J.H., Jo, E.H., Kim, B.Y., Song, J., Kwon, S.W., and Weon, H.Y. 2013. Niabella terrae sp. nov. isolated from greenhouse soil. J. Microbiol. 51, 731–735.

    Article  CAS  PubMed  Google Scholar 

  • Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed., Pearson Education, Inc., California, USA.

    Google Scholar 

  • Dai, J., Jiang, F., Wang, Y., Yu, B., Qi, H., Fang, C., and Zheng, C. 2011. Niabella tibetensis sp. nov., isolated from soil, and emended description of the genus Niabella. Int. J. Syst. Evol. Microbiol. 61, 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Cui, C.H., Park, S.C., Kim, J.K., Yu, H.S., Jin, F.X., Sun, C., Kim, S.C., and Im, W.T. 2014. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One 9, e96914.

    Article  PubMed Central  PubMed  Google Scholar 

  • Euzeby, J.P. 1997. List of bacterial names with standing in nomenclature: A folder available on the internet. Int. J. Syst. Microbiol. 47, 590–592.

    CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolutio. 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Glaeser, S.P., Galatis, H., Martin, K., and Kämpfer, P. 2013. Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int. J. Syst. Evol. Microbiol. 63, 3487–3493.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.K., Choi, T.E., Liu, Q.M., Park, H.Y., Yi, T.H., Yoon, M.H., Kim, S.C., and Im, W.T. 2013a. Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment. J. Microbiol. 51, 394–399.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.K., Cui, C.H., Liu, Q., Yoon, M.H., Kim, S.C., and Im, W.T. 2013b. Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases. Food Chem. 141, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.Y., Weon, H.Y., Yoo, S.H., Hong, S.B., Kwon, S.W., Stackebrandt, E., and Go, S.J. 2007. Niabella aurantiaca gen. nov., sp. nov., isolated from a greenhouse soil in Korea. Int. J. Syst. Evol. Microbiol. 57, 538–541.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York, USA.

    Book  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology. Wiley, New York, USA.

    Google Scholar 

  • Pham, V.H. and Kim, J. 2014. Niabella thaonhiensis sp. nov., isolated from the forest soil of Kyonggi University in Korea. Curr. Microbiol. 69, 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach, H. 1992. The order Cytophagales. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, pp. 3631–3675. In Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.). Springer, New York, USA.

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., and Lee, S.T. 2004. Development of a plate technique for screening of polysaccharidedegrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Method. 56, 375–382.

    Article  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, H., Zhang, Y.Z., Man, C.X., Chen, W.F., Sui, X.H., Li, Y., Zhang, X.X., and Chen, W.X. 2009. Niabella yanshanensis sp. nov., isolated from the soybean rhizosphere. Int. J. Syst. Evol. Microbiol. 59, 2854–2856.

    Article  CAS  PubMed  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Joa, J.H., Kwon, S.W., Kim, W.G., and Koo, B.S. 2008. Niabella soli sp. nov., isolated from soil from Jeju Island, Korea. Int. J. Syst. Evol. Microbiol. 58, 467–469.

    Article  CAS  PubMed  Google Scholar 

  • Weon, H.Y., Yoo, S.H., Kim, B.Y., Son, J.A., Kim, Y.J., and Kwon, S.W. 2009. Niabella ginsengisoli sp. nov., isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol. 59, 1282–1285.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Ki Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, KJ., Im, WT., Kim, DW. et al. Niabella ginsenosidivorans sp. nov., isolated from compost. J Microbiol. 53, 762–766 (2015). https://doi.org/10.1007/s12275-015-5463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5463-z

Keywords

Navigation