Skip to main content
Log in

Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Active-phase engineering is regularly utilized to tune the selectivity of metal nanoparticles (NPs) in heterogeneous catalysis. However, the lack of understanding of the active phase in electrocatalysis has hampered the development of efficient catalysts for CO2 electroreduction. Herein, we report the systematic engineering of active phases of Pd NPs, which are exploited to select reaction pathways for CO2 electroreduction. In situ X-ray absorption spectroscopy, in situ attenuated total reflection-infrared spectroscopy, and density functional theory calculations suggest that the formation of a hydrogen-adsorbed Pd surface on a mixture of the α- and β-phases of a palladium-hydride core (α+β PdH x @PdH x ) above −0.2 V (vs. a reversible hydrogen electrode) facilitates formate production via the HCOO* intermediate, whereas the formation of a metallic Pd surface on the β-phase Pd hydride core (β PdH x @Pd) below −0.5 V promotes CO production via the COOH* intermediate. The main product, which is either formate or CO, can be selectively produced with high Faradaic efficiencies (>90%) and mass activities in the potential window of 0.05 to −0.9 V with scalable application demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    Article  Google Scholar 

  2. Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

    Article  Google Scholar 

  3. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquidmediated selective conversion of CO2 to COat low overpotentials. Science 2011, 334, 643–644.

    Article  Google Scholar 

  4. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  Google Scholar 

  5. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  Google Scholar 

  6. Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

    Article  Google Scholar 

  7. Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

    Article  Google Scholar 

  8. Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

    Article  Google Scholar 

  9. Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 2014, 136, 16473–16476.

    Article  Google Scholar 

  10. Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

    Article  Google Scholar 

  11. Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

    Article  Google Scholar 

  12. Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.

    Article  Google Scholar 

  13. Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  Google Scholar 

  14. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    Article  Google Scholar 

  15. Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

    Article  Google Scholar 

  16. Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

    Article  Google Scholar 

  17. Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

    Article  Google Scholar 

  18. Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.

    Article  Google Scholar 

  19. Schlögl, R. Heterogeneous catalysis. Angew. Chem., Int. Ed. 2015, 54, 3465–3520.

    Article  Google Scholar 

  20. Rotermund, H. H.; Engel, W.; Kordesch, M.; Ertl, G. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature 1990, 343, 355–357.

    Article  Google Scholar 

  21. Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science 2001, 292, 1357–1360.

    Article  Google Scholar 

  22. Wang, J. G.; Li, W. X.; Borg, M.; Gustafson, J.; Mikkelsen, A.; Pedersen, T. M.; Lundgren, E.; Weissenrieder, J.; Klikovits, J.; Schmid, M. et al. One-dimensional PtO2 at Pt steps: Formation and reaction with CO. Phys. Rev. Lett. 2005, 95, 256102.

    Article  Google Scholar 

  23. Pettinger, B.; Bao, X. H.; Wilcock, I.; Muhler, M.; Schlögl, R.; Ertl, G. Thermal decomposition of silver oxide monitored by Raman spectroscopy: From AgO units to oxygen atoms chemisorbed on the silver surface. Angew. Chem., Int. Ed. 1994, 33, 85–86.

    Article  Google Scholar 

  24. Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

    Article  Google Scholar 

  25. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    Article  Google Scholar 

  26. Long, R.; Wu, D.; Li, Y. P.; Bai, Y.; Wang, C. M.; Song, L.; Xiong, Y. J. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Res. 2015, 8, 2115–2123.

    Article  Google Scholar 

  27. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    Article  Google Scholar 

  28. Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai, W. B. From HCOOH to COat Pd electrodes: A surface-enhanced infrared spectroscopy study. J. Am. Chem. Soc. 2011, 133, 14876–14879.

    Article  Google Scholar 

  29. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  Google Scholar 

  30. Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active ß-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

    Article  Google Scholar 

  31. Sahu, S. C.; Samantara, A. K.; Dash, A.; Juluri, R. R.; Sahu, R. K.; Mishra, B. K.; Jena, B. K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Res. 2013, 6, 635–643.

    Article  Google Scholar 

  32. Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 2015, 162, F190–F203.

    Article  Google Scholar 

  33. Min, X. Q.; Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 2015, 137, 4701–4708.

    Article  Google Scholar 

  34. Gao, D. F.; Wang, J.; Wu, H. H.; Jiang, X. L.; Miao, S.; Wang, G. X.; Bao, X. H. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem. Commun. 2015, 55, 1–5.

    Article  Google Scholar 

  35. Kortlever, R.; Balemans, C.; Kwon, Y.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal. Today 2015, 244, 58–62.

    Article  Google Scholar 

  36. Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbonsupported bimetallic Pd-Pt nanoparticles. ACS Catal. 2015, 5, 3916–3923.

    Article  Google Scholar 

  37. Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. USA 2015, 112, 15809–15814.

    Article  Google Scholar 

  38. Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Article  Google Scholar 

  39. Pérez-Rodríguez, S.; Rillo, N.; Lázaro, M. J.; Pastor, E. Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction. Appl. Catal. B-Environ. 2015, 163, 83–95.

    Article  Google Scholar 

  40. Zhang, Y. J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.

    Article  Google Scholar 

  41. Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 2016, 262, 90–94.

    Article  Google Scholar 

  42. Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Srabionyan, V. V.; Bugaev, L. A.; Soldatov, A. V.; Lamberti, C.; Dmitriev, V. P.; van Bokhoven, J. A. Temperature-and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 2014, 118, 10416–10423.

    Article  Google Scholar 

  43. Tew, M. W.; Miller, J. T.; van Bokhoven, J. A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 edge vs. K edge X-ray absorption spectroscopy. J. Phys. Chem. C 2009, 113, 15140–15147.

    Article  Google Scholar 

  44. Tew, M. W.; Nachtegaal, M.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silicasupported palladium nanoparticles: In situ Pd K and L3 edge XAS. Phys. Chem. Chem. Phys. 2012, 14, 5761–5768.

    Article  Google Scholar 

  45. Guo, N.; Fingland, B. R.; Williams, W. D.; Kispersky, V. F.; Jelic, J.; Delgass, W. N.; Ribeiro, F. H.; Meyer, R. J.; Miller, J. T. Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Phys. Chem. Chem. Phys. 2010, 12, 5678–5693.

    Article  Google Scholar 

  46. Karamad, M.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catal. 2015, 5, 4075–4081.

    Article  Google Scholar 

  47. Su, H. Y.; Gorlin, Y.; Man, I. C.; Calle-Vallejo, F.; Nørskov, J. K.; Jaramillo, T. F.; Rossmeisl, J. Identifying active surface phases for metal oxide electrocatalysts: A study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 2012, 14, 14010–14022.

    Article  Google Scholar 

  48. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  Google Scholar 

  49. Yang, Y. Y.; Ren, J.; Zhang, H. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution. Langmuir 2013, 29, 1709–1716.

    Article  Google Scholar 

  50. Miyake, H.; Okada, T.; Samjeske, G.; Osawa, M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 3662–3669.

    Article  Google Scholar 

  51. Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864.

    Article  Google Scholar 

  52. Zhang, H.-X.; Wang, S.-H.; Jiang, K.; André, T.; Cai, W.-B. In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH. J. Power Sources 2012, 199, 165–169.

    Article  Google Scholar 

  53. Huo, S. J.; Wang, J. Y.; Sun, D. L.; Cai, W. B. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode. Appl. Spectrosc. 2009, 63, 1162–1167.

    Article  Google Scholar 

  54. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

    Article  Google Scholar 

  55. Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.

    Article  Google Scholar 

  56. Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to COon ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

    Article  Google Scholar 

  57. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Basic Research Program of China (Nos. 2016YFB0600901 and 2013CB733501), the National Natural Science Foundation of China (Nos. 21136001, 21573222, 91545202 and 91334103), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200). We thank staff at the BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) for the kind help during XAFS measurements. G. X. W. also thanks the financial support from CAS Youth Innovation Promotion Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Wang, Guoxiong Wang or Xinhe Bao.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Zhou, H., Cai, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017). https://doi.org/10.1007/s12274-017-1514-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1514-6

Keywords

Navigation