Skip to main content
Log in

Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a hybrid energy cell that can simultaneously or individually harvest wind, solar, and chemical energies to power some electronic devices. By utilizing the wind driven relative rotations between a polytetrafluoroethylene film and an etched Al film attached on two acrylic tubes, the fabricated triboelectric nanogenerator (TENG) can deliver an open-circuit voltage of about 90 V, a short-circuit current density of about 0.5 mA/m2, and a maximum power density of 16 mW/m2, which is capable of directly lighting up 20 blue light-emitting-diodes (LEDs). By integrating a TENG, a solar cell, and an electrochemical cell, a hybrid energy cell has been fabricated to simultaneously scavenge three different types of energies. As compared with the individual energy units, the hybrid energy cell exhibited much better performance in charging a capacitor. Moreover, we also demonstrated that the hybrid energies generated can be stored in a Li-ion battery for powering a commercial wind speed sensor and a temperature sensor. This work represents significant progress toward practical applications of hybrid energy cells, providing potential solutions for simultaneously scavenging wind, solar, and chemical energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McElroy, M. B.; Lu, X.; Nielsen, C. P.; Wang, Y. X. Potential for wind-generated electricity in China. Science 2009, 325, 1378–1380.

    Article  Google Scholar 

  2. Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

    Article  Google Scholar 

  3. Long, R. Production and utilization of chemical energy. Nature 1950, 166, 669–672.

    Article  Google Scholar 

  4. Yang, Y.; Zhang, H. L.; Lee, S. M.; Kim, D.; Hwang, W.; Wang, Z. L. Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 2013, 13, 803–808.

    Article  Google Scholar 

  5. Han, M. D.; Zhang, X. S.; Meng, B.; Liu, W.; Tang, W.; Sun, X. M.; Wang, W.; Zhang, H. X. r-Shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 2013, 7, 8554–8560.

    Article  Google Scholar 

  6. Yang, Y.; Zhang, H. L.; Liu, Y.; Lin, Z. H.; Lee, S.; Lin, Z. Y.; Wong, C. P.; Wang, Z. L. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 2013, 7, 2808–2813.

    Article  Google Scholar 

  7. Yang, Y.; Zhang, H. L.; Zhu, G.; Lee, S.; Lin, Z. H.; Wang, Z. L. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 2013, 7, 785–790.

    Article  Google Scholar 

  8. Priya, S.; Chen, C. T.; Fye, D.; Zahnd, J. Piezoelectric windmill: A novel solution to remote sensing. Jpn. J. Appl. Phys. 2005, 44, L104–L107.

    Article  Google Scholar 

  9. Priya, S. Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 2005, 87, 184101.

    Article  Google Scholar 

  10. Myers, R.; Vickers, M.; Kim, H.; Priya, S. Small scale windmill. Appl. Phys. Lett. 2007, 90, 054106.

    Article  Google Scholar 

  11. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  Google Scholar 

  12. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  Google Scholar 

  13. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  Google Scholar 

  14. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

    Article  Google Scholar 

  15. Zhang, H. L.; Yang, Y.; Zhong, X. D.; Su, Y. J.; Zhou, Y. S.; Hu, C. G.; Wang, Z. L. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 2014, 8, 680–689.

    Article  Google Scholar 

  16. Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461–9468.

    Article  Google Scholar 

  17. McGehee, M. D. Paradigm shifts in dye-sensitized solar cells. Science 2011, 334, 607–608.

    Article  Google Scholar 

  18. Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

    Article  Google Scholar 

  19. Lin, Y. Y.; Lee, Y. Y.; Chang, L. W.; Wu, J. J.; Chen, C. W. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells. Appl. Phys. Lett. 2009, 94, 063308.

    Article  Google Scholar 

  20. Bresadola, M. Medicine and science in the life of Luigi Galvani. Brain Res. Bull. 1998, 46, 367–380.

    Article  Google Scholar 

  21. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Yang or Zhong Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhong, X., Wang, X. et al. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 7, 1631–1639 (2014). https://doi.org/10.1007/s12274-014-0523-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0523-y

Keywords

Navigation