Skip to main content
Log in

Phenethyl isothiocyanate induced apoptosis via down regulation of Bcl-2/XIAP and triggering of the mitochondrial pathway in MCF-7 cells

  • Research Article
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Although isothiocyanates have been shown to inhibit carcinogen-induced tumorigenesis, no studies have been made to determine their therapeutic potential for the treatment of breast cancer. In the present study, we evaluated the apoptotic activities of phenethyl isothiocyanate (PEITC) in human breast cancer MCF-7 cells. Exposure to PEITC potently reduced cell viability. In addition, DNA fragments and TUNEL positive nuclei were detected in PEITC-treated cells. Furthermore, PEITC induced apoptosis via activation of caspases 7 and 9 and the cleavage of PARP, and these effects were reversed by treatment with the caspase inhibitor, Z-VAD-fmk. PEITC also caused a decrease in the levels of Bcl-2 with a concomitant increase in Bax levels, which resulted in the release of cytochrome c. XIAP suppression and Smac translocation also contributed to the PEITC-induced apoptosis. However, PEITC did not increase the expressions of p53 and p21. Taken together, the results of this study demonstrate that PEITC significantly induces apoptosis via a mitochondrial pathway. Specifically, PEITC induced a change in the Bax/Bcl-2 ratios, XIAP levels and Smac translocation that was conjunction with the release of cytochrome c and following caspase activation. Therefore, PEITC has the potential for use as a therapeutic agent for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almog, N. and Rotter, V., Involvement of p53 in cell differentiation and development. Biochim. Biophys. Acta, 1333, F1–27 (1997).

    PubMed  CAS  Google Scholar 

  • Baselga, J. and Mendelsohn, J., The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res. Treat., 29, 127–138 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Bold, R. J., Termuhlen, P. M., and Mcconkey, D. J., Apoptosis, cancer and cancer therapy. Surg. Oncol., 6, 133–142 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cain, K., Brown, D. G., Langlais, C., and Cohen, G. M., Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem., 274, 22686–22692 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cho, M. K., Kim, W. D., Ki, S. H., Hwang, J. I., Choi, S., Lee, C. H., and Kim, S. G., Role of Galpha12 and Galpha13 as novel switches for the activity of Nrf2, a key antioxidative transcription factor. Mol. Cell. Biol., 27, 6195–6208 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Cho, M. K., Sung, M. A., Kim, D. S., Park, H. G., Jew, S. S., and Kim, S. G., 2-Oxo-3,23-isopropylidene-asiatate (AS2006A), a wound-healing asiatate derivative, exerts anti-inflammatory effect by apoptosis of macrophages. Int. Immunopharmacol., 3, 1429–1437 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Devarajan, E., Sahin, A. A., Chen, J. S., Krishnamurthy, R. R., Aggarwal, N., Brun, A. M., Sapino, A., Zhang, F., Sharma, D., Yang, X. H., Tora, A. D., and Mehta, K., Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene, 21, 8843–8851 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q. L. and Reed, J. C., IAP family proteins—suppressors of apoptosis. Genes Dev., 13, 239–252 (1999).

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B., WAF1, a potential mediator of p53 tumor suppression. Cell, 75, 817–825 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Fahey, J. W., Zhang, Y., and Talalay, P., Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94, 10367–10372 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gross, A., Mcdonnell, J. M., and Korsmeyer, S. J., BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 13, 1899–1911 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hayes, J. D., Kelleher, M. O., and Eggleston, I. M., The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr., 47Suppl 2, 73–88 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S. S., Inhibition of carcinogenesis by isothiocyanates. Drug Metab. Rev., 32, 395–411 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S. S., Kenney, P. M., Wang, M., Trushin, N., and Upadhyaya, P., Effects of phenethyl isothiocyanate and benzyl isothiocyanate, individually and in combination, on lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Lett., 150, 49–56 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hu, R., Kim, B. R., Chen, C., Hebbar, V., and Kong, A. N., The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinogenesis, 24, 1361–1367 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y. and Morris, M. E., Membrane transport of dietary phenethyl isothiocyanate by ABCG2 (breast cancer resistance protein). Mol. Pharm., 2, 414–419 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kuang, Y. F. and Chen, Y. H., Induction of apoptosis in a nonsmall cell human lung cancer cell line by isothiocyanates is associated with P53 and P21. Food Chem. Toxicol., 42, 1711–1718 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kurebayashi, J., Endocrine-resistant breast cancer: underlying mechanisms and strategies for overcoming resistance. Breast Cancer, 10, 112–119 (2003).

    Article  PubMed  Google Scholar 

  • Kurokawa, H., Nishio, K., Fukumoto, H., Tomonari, A., Suzuki, T., and Saijo, N., Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol. Rep., 6, 33–37 (1999).

    PubMed  CAS  Google Scholar 

  • Satyan, K. S., Swamy, N., Dizon, D. S., Singh, R., Granai, C. O., and Brard, L., Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol. Oncol., 103, 261–270 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Simstein, R., Burow, M., Parker, A., Weldon, C., and Beckman, B., Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp. Biol. Med. (Maywood), 228, 995–1003 (2003).

    CAS  Google Scholar 

  • Talalay, P. and Fahey, J. W., Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr., 131, 3027S–3033S (2001).

    PubMed  CAS  Google Scholar 

  • Thomadaki, H. and Scorilas, A., BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit. Rev. Clin. Lab. Sci., 43, 1–67 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Twiddy, D., Brown, D. G., Adrain, C., Jukes, R., Martin, S. J., Cohen, G. M., Macfarlane, M., and Cain, K., Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J. Biol. Chem., 279, 19665–19682 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Twiddy, D., Cohen, G. M., Macfarlane, M., and Cain, K., Caspase-7 is directly activated by the approximately 700- kDa apoptosome complex and is released as a stable XIAP-caspase- 7 approximately 200-kDa complex. J. Biol. Chem., 281, 3876–3888 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Visanji, J. M., Duthie, S. J., Pirie, L., Thompson, D. G., and Padfield, P. J., Dietary isothiocyanates inhibit Caco-2 cell proliferation and induce G2/M phase cell cycle arrest, DNA damage, and G2/M checkpoint activation. J. Nutr., 134, 3121–3126 (2004).

    PubMed  CAS  Google Scholar 

  • Xiao, D., Vogel, V., and Singh, S. V., Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol. Cancer Ther., 5, 2931–2945 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Xiao, D., Zeng, Y., Choi, S., Lew, K. L., Nelson, J. B., and Singh, S. V., Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin. Cancer Res., 11, 2670–2679 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res., 555, 173–190 (2004).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kyung Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.W., Cho, M.K. Phenethyl isothiocyanate induced apoptosis via down regulation of Bcl-2/XIAP and triggering of the mitochondrial pathway in MCF-7 cells. Arch. Pharm. Res. 31, 1604–1612 (2008). https://doi.org/10.1007/s12272-001-2158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-2158-2

Key words

Navigation