Skip to main content
Log in

Optimization design of cycling clothes’ patterns based on digital clothing pressures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Enormous research has focused on the analysis of garment wear-comfort using clothing pressure; however, optimization of clothing pressure based garment comfort has remained elusive. In this context, we propose a new method to optimize cycling clothes’ patterns based on the difference of static-to-dynamic clothing pressure (DSDCP). Firstly, we mapped 53 measuring points on an upper cycling garment on which we measured garment pressures in both static and dynamic conditions. We then analyzed DSDCP to find the rightful garment patterns to adjust according to the analyzed results. A garment optimization degree (OD) is proposed to carry out a quantitative analysis for garment comfort optimization. Finally, two upper cycling garments were made according to the original patterns and optimized patterns. A comparative analysis through cyclist wear trials of the cycling garments to test the optimization effect was done. Results show that our proposed method improves dynamic wear comfort significantly. Moreover, the optimized upper cycling garment, offers additional improvement of dynamic wear comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Laing and D. Carr in “Textiles in Sport”, 1st ed. (S. Shishoo Ed.), pp.232–261, Woodhead Publishing, Cambridge, UK, 2005.

  2. H. S. Hall and E. R. Kaswell, Text. Res. J., 15, 178 (1945).

    Article  CAS  Google Scholar 

  3. S. H. Hsieh, F. R. Zhang, and H. S. Li, J. Appl. Polym. Sci., 100, 4311 (2006).

    Article  CAS  Google Scholar 

  4. R. O. Sodetz, U. S. Patent, 5427834 (1995).

    Google Scholar 

  5. P. Gibson, D. Rivin, C. Kendrick, and H. Schreuder-Gibson, Text. Res. J., 69, 311 (1999).

    Article  CAS  Google Scholar 

  6. S. Hayashi, N. Ishikawa, and C. Giordano, J. Ind. Text., 23, 74 (1993).

    Article  Google Scholar 

  7. J. McCann in “Textiles in Sport” (S. Shishoo Ed.), pp.44–70, Woodhead Publishing, Boca Raton, FL, 2005.

  8. E. Kamalha, Y. Zeng, J. I. Mwasiagi, and S. Kyatuheire, J. Sens. Stud., 28, 423 (2013).

    Article  Google Scholar 

  9. Y. Jeong, K. Hong, and S.-J. Kim, Fiber. Polym., 7, 195 (2006).

    Article  Google Scholar 

  10. H. Rodel, A. Schenk, C. Herzberg, and S. Krzywinski, Int. J. Cloth. Sci. Technol., 13, 3 (2001).

    Article  Google Scholar 

  11. Y. Yunchu and Z. Weiyuan, Int. J. Cloth. Sci. Technol., 19, 334 (2007).

    Article  Google Scholar 

  12. C. H. Kim, I. H. Sul, C. K. Park, and S. Kim, Int. J. Cloth. Sci. Technol., 22, 101 (2010).

    Article  Google Scholar 

  13. Y. Yang, F. Zou, Z. Li, X. Ji, and M. Chen, Fibres Text. East. Eur., 19, 107 (2011).

    Google Scholar 

  14. Y. Meng, P. Y. Mok, and X. Jin, Comput.-Aided Des., 44, 721 (2012).

    Article  Google Scholar 

  15. B. Ziegert and G. Keil, Cloth. Text. Res. J., 6, 54 (1988).

    Article  Google Scholar 

  16. Y. J. Wang, P. Y. Mok, Y. Li, and Y. L. Kwok, Appl. Ergon., 42, 900 (2011).

    Article  CAS  Google Scholar 

  17. L. Shunhua and W. Jian Ping, J. Text. Inst., 107, 1004 (2015).

    Google Scholar 

  18. F. Kilinc-Balci in “Improving Comfort in Clothing”, 1st ed. (G. Song Ed.), pp.97–113, Woodhead Publishing, Cambridge, UK, 2011.

  19. Y. Liu and D. Chen, Int. J. Cloth. Sci. Technol., 27, 495 (2015).

    Article  Google Scholar 

  20. F. You, J. M. Wang, X. N. Luo, Y. Li, and X. Zhang, Int. J. Cloth. Sci. Technol., 14, 307 (2002).

    Article  Google Scholar 

  21. A. S. W. Wong, Y. Li, and X. Zhang, Sen-I Gakkaishi, 60, 293 (2004).

    Article  CAS  Google Scholar 

  22. Y. Na, Fiber. Polym., 16, 471 (2015).

    Article  CAS  Google Scholar 

  23. R. Liu, T. Little, and J. Williams, Fiber. Polym., 15, 632 (2014).

    Article  CAS  Google Scholar 

  24. R. Zheng, W. Yu, and J. Fan, Fiber. Polym., 10, 124 (2009).

    Article  Google Scholar 

  25. M. Zhang, H. Dong, X. Fan, and R. Dan, Int. J. Cloth. Sci. Technol., 27, 207 (2015).

    Article  Google Scholar 

  26. S. Sha, G. Jiang, P. Ma, and X. Li, Fiber. Polym., 16, 1812 (2015).

    Article  Google Scholar 

  27. D.-E. Kim and K. LaBat, J. Text. Inst., 104, 819 (2013).

    Article  Google Scholar 

  28. Z.-M. Deng and L. Wang, Fiber. Polym., 11, 531 (2010).

    Article  CAS  Google Scholar 

  29. R. Liu, Y.-L. Kwok, Y. Li, T.-T. Lao, X. Q. Dai, and X. Zhang, Fiber. Polym., 8, 302 (2007).

    Article  Google Scholar 

  30. J. Fan and A. P. Chan, Int. J. Cloth. Sci. Technol., 17, 6 (2005).

    Article  Google Scholar 

  31. G. Lawson, D. Salanitri, and B. Waterfield, Appl. Ergon., 53, 323 (2016).

    Article  Google Scholar 

  32. A. S. M. Sayem, R. Kennon, and N. Clarke, Int. J. Fashion Des. Tech. Educ., 3, 45 (2010).

    Article  Google Scholar 

  33. N. Varghese and G. Thilagavathi, Fiber. Polym., 17, 484 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Kamalha, E., Wang, J. et al. Optimization design of cycling clothes’ patterns based on digital clothing pressures. Fibers Polym 17, 1522–1529 (2016). https://doi.org/10.1007/s12221-016-6402-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6402-2

Keywords

Navigation