Skip to main content
Log in

Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Singha and V. K. Thankur, Bull. Mater. Sci., 31, 791 (2008).

    Article  CAS  Google Scholar 

  2. D. Bachtiar, S. M. Sapuan, and M. M. Hamdan, International Journal of Automotive and Mechanical Engineering (IJAME), 1, 79 (2010).

    Google Scholar 

  3. J. P. Siregar, Master of Science Thesis, UPM, Kuala Lumpur, 2005.

  4. D. Bachtiar, S. M. Sapuan, and M. M. Hamdan, Mater. Des., 29, 1285 (2008).

    Article  Google Scholar 

  5. S. M. Sapuan and D. Bachtiar, Procedia Chemistry, 4, 101 (2012).

    Article  CAS  Google Scholar 

  6. D. Bachtiar, S. M. Sapuan, E. S. Zainuddin, A. Khalina, and K. Z. H. M. Dahlan, Fiber. Polym., 13, 894 (2012).

    Article  CAS  Google Scholar 

  7. Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, Mater. Des., 29, 1666 (2008).

    Article  CAS  Google Scholar 

  8. Z. Leman, S. M. Sapuan, M. Azwan, M. M. H. M. Ahmad, and M. A. Maleque, Polym. Plast. Technol. Eng., 47, 606 (2008).

    Article  CAS  Google Scholar 

  9. L. J. Da Silva, T. H. Panzera, A. L. Christoforo, J. C. C. Rubio, and F. Scarpa, Mater. Res., 15, 1003 (2012).

    Article  Google Scholar 

  10. A. Alhuthali, I. M. Low, and C. Dong, Compos. Part BEng., 43, 2772 (2012).

    Article  CAS  Google Scholar 

  11. A. G. Facca, M. T. Kortschot, and N. Yan, Compos. Part AAppl. S., 37, 1660 (2006).

    Article  Google Scholar 

  12. D. Bachtiar, S. M. Sapuan, E. S. Zainudin, A. Khalina, and K. Z. H. M. Dahlan, Pertanika J. Sci. Technol., 21, 141 (2013).

    Google Scholar 

  13. J. Sahari, S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman, Fibres Text East Eur., 20, 21 (2012).

    CAS  Google Scholar 

  14. S. Y. Fu and B. Lauke, Compos. Sci. Technol., 56, 1179 (1996).

    Article  CAS  Google Scholar 

  15. H. Derek and T. W. Clyne, “An Introduction to Composite Materials”, Cambridge University, Cambridge, 1981.

    Google Scholar 

  16. F. Vilaseca, A. V. Gonzalez, P. J. H. Franco, J. P. L. M. A. Pèlach, and P. Mutjé, Bioresource Technology, 101, 387 (2010).

    Article  CAS  Google Scholar 

  17. S. Shibata, Y. Cao, and I. Fukumoto, Compos. Part AAppl. S., 39, 640 (2008).

    Article  Google Scholar 

  18. D. C. Montgomery and G. C. Runger, “Applied Statistics and Probability for Engineers”, 2nd ed., John Wiley and Sons, 1999.

    Google Scholar 

  19. P. Antich, A. Vazquez, I. Mondragon, and C. Bernal, Compos. Part A-Appl. S., 37, 139 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Oumer or D. Bachtiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oumer, A.N., Bachtiar, D. Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites. Fibers Polym 15, 334–339 (2014). https://doi.org/10.1007/s12221-014-0334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0334-5

Keywords

Navigation