Skip to main content
Log in

Theoretical study on the bending rigidity of filament yarns with an elliptical cross-section using energy method. I. Theoretical modeling

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The geometrical model of yarn currently in use is assumed to be a circular cylindrical under the bending deformation, but this assumption is not really true because the cross-section of yarn has to change to an elliptic shape when the compressive force acted on the yarn is considered. Therefore, as the first part of a series of work, the present paper considers the fact that yarn geometry changes from a circular cylindrical to an elliptical cylindrical under an external applied bending moment, and then analyzes the relationship of bending rigidity between constituent filaments and the formed yarn, which is useful in predicting or selecting specified bending property of filaments by the requirements of yarn. In the present paper, the bending and torsional energies stored in filaments are analyzed according to their deformations by the energy method. The explicit formula is then obtained to quantify the bending rigidity relationship between the filament and yarn, in which four characters are featured as the eccentricity of elliptical cross-section of yarn, the ratio of bending to torsional rigidity of filament, the helix angle of the filament on yarn surface and the number of filaments inside the yarn. Moreover, the bending rigidity of filament yarns formulated by an earlier method with a circle shape assumption can also be obtained by the proposed method with the eccentricity being equal to zero. Based on the analytical solution, the earlier method in which the circle shape takes place of the elliptical shape of yarn for simplification can also be evaluated. This will be depicted in the Part II of this series of work, in which the relative error between the ideal and revised model would be analyzed, and the numerical simulations of relationship between filament and yarn would also be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. T. Peirce, J. Text. Inst., 28, 45 (1937).

    Article  Google Scholar 

  2. S. S. Yukhin and Y. A. Yukhina, J. Text. Inst., 87, 532 (1996).

    Article  Google Scholar 

  3. K. F. Choi and S. K. Tandon, J. Text. Inst., 97, 49 (2006).

    Article  CAS  Google Scholar 

  4. Z. Q. Du and W. D. Yu, Meas. Sci. Technol., 18, 3547 (2007).

    Article  CAS  Google Scholar 

  5. P. Grosberg and S. Kedia, J. Text. Inst., 57, 71 (1966).

    Google Scholar 

  6. G. A. V. Leaf and W. Oxenham, J. Text. Inst., 72, 168 (1981).

    Article  Google Scholar 

  7. A. M. Seyam, Textile Progress, 31, 1 (2002).

    Google Scholar 

  8. J. W. Park and A. G. Oh, Text. Res. J., 76, 478 (2006).

    Article  CAS  Google Scholar 

  9. D. Dao, A. Bullerwell, and M. Mohamed, Text. Res. J., 61, 760 (1991).

    Article  Google Scholar 

  10. K. W. Lee, Text. Res. J., 75, 710 (2005).

    Article  CAS  Google Scholar 

  11. T. V. Sagar and P. Potluri, Text. Res. J., 74, 879 (2004).

    Article  CAS  Google Scholar 

  12. Y. J. Jeong and J. S. Lee, J. Text. Inst., 92, 103 (2001).

    Article  Google Scholar 

  13. R. D. Anandjiwala and G. A. V. Leaf, Text. Res. J., 61, 619 (1991).

    Article  Google Scholar 

  14. S. V. Lomov, A. V. Truevtzev, and C. Cassidy, Text. Res. J., 70, 1088 (2000).

    Article  CAS  Google Scholar 

  15. G. M. Abbott, P. Grosberg, and G. A. V. Leaf, J. Text. Inst., 64, 346 (1973).

    Article  Google Scholar 

  16. F. Goktepe, C. A. Lawrence, and G. A. V. Leaf, Text. Res. J., 70, 508 (2000).

    Article  CAS  Google Scholar 

  17. J. W. S. Hearle and W. J. Shanahan, J. Text. Inst., 69, 81 (1978).

    Article  Google Scholar 

  18. Z. Tang, W. B. Fraser, L. Wang, and X. Wang, Fiber. Polym., 9, 625 (2008).

    Article  CAS  Google Scholar 

  19. R. J. Harwood, S. A. Grishanov, S. V. Lomov, and T. Cassidy, J. Text. Inst., 88, 373 (1997).

    Google Scholar 

  20. J. W. S. Hearle, P. Potluri, and V. S. Thammandra, J. Text. Inst., 92, 53 (2001).

    Article  Google Scholar 

  21. J. L. Hu, “Structure and Mechanics of Woven Fabrics”, 1st ed., pp.21–90, Woodhead Publishing Ltd. and CRC Press LLC, England, 2004.

    Google Scholar 

  22. R. G. Livesey and J. D. Owen, J. Text. Inst., 55, 516 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Xu, B. & Yu, W. Theoretical study on the bending rigidity of filament yarns with an elliptical cross-section using energy method. I. Theoretical modeling. Fibers Polym 11, 883–890 (2010). https://doi.org/10.1007/s12221-010-0883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0883-1

Keywords

Navigation