Skip to main content
Log in

Elastic Properties of Actin Assemblies in Different States of Nucleotide Binding

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In this paper, the elastic properties of monomeric actin (G-actin) and the trimer nucleus (G-actin trimer) in different states of nucleotide binding are estimated using steered molecular dynamic (SMD) simulations. Three nucleotide binding states are considered: ADP- and ATP-bound actin and nucleotide-free actin assemblies. Our results show that nucleotide binding and the corresponding changes in structure have significant effects on the mechanical behaviors of actin assemblies. Simulations reveal that the deformation behavior of G-actin monomers is generally elastic up to engineering strains of 16 and 40% in the tension and shear tests, respectively. In addition, the G-actin trimers react linearly up to strains of 18%. The computed persistence lengths for G-actin monomers and trimers are in the range of 8–20 μm, which are consistent with earlier experimental results. Our atomistic simulation results also reveal that formation and rupture of hydrogen bonds between actin nucleotide binding site and its nucleotide have significant role in response of actin assemblies to loading. This study provides more information about the relationship of actin nucleotide binding and mechanical properties of cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ackbarow, T., and M. Buehler. Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J. Mater. Sci. 42:8771–8787, 2007.

    Article  Google Scholar 

  2. Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Oxford University Press, 1987.

    MATH  Google Scholar 

  3. Boal, D. Mechanics of the Cell. New York: Cambridge University Press, 2002.

  4. Chu, J.-W., and G. A. Voth. Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. PNAS 102:13111–13116, 2005.

    Article  Google Scholar 

  5. Chu, J.-W., and G. A. Voth. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90:1572–1582, 2006.

    Article  Google Scholar 

  6. Civelekoglu, G., and L. Edelstein-Keshet. Modelling the dynamics of F-actin in the cell. Bull. Math. Biol. 56:587–616, 1994.

    MATH  Google Scholar 

  7. Gardel, M. L., F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, and D. A. Weitz. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. PNAS 103:1762–1767, 2006.

    Article  Google Scholar 

  8. Gardel, M. L., J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz. Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305, 2004.

    Article  Google Scholar 

  9. Graceffa, P., and R. Dominguez. Crystal structure of monomeric actin in the ATP state: structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278:34172–34180, 2003.

    Article  Google Scholar 

  10. Grubmüller, H., H. Heller, A. Windemuth, and K. Schulten. Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6:121–142, 1991.

    Article  Google Scholar 

  11. Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. Atomic model of the actin filament. Nature 347:44–49, 1990.

    Article  Google Scholar 

  12. Humphrey, W., A. Dalke, and K. Schulten. VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38, 1996.

    Article  Google Scholar 

  13. Huxley, H. E., A. Stewarta, H. Sosaa, and T. Irvinga. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:2411–2421, 1994.

    Article  Google Scholar 

  14. Isambert, H., P. Venier, A. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and M. Carlier. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270:11437–11444, 1995.

    Article  Google Scholar 

  15. Isralewitz, B., M. Gao, and K. Schulten. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11:224–230, 2001.

    Article  Google Scholar 

  16. Keten, S., and M. J. Buehler. Large deformation and fracture mechanics of a beta-helical protein nanotube: atomistic and continuum modeling. Comput. Meth. Appl. Mech. Eng. 197:3203–3214, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kojima, H., A. Ishijima, and T. Yanagida. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. PNAS 91:12962–12966, 1994.

    Article  Google Scholar 

  18. Lee, E., M. Gao, N. Pinotsis, M. Wilmanns, and K. Schulten. Mechanical strength of the titin Z1Z2-telethonin complex. Structure 14:497–509, 2006.

    Article  Google Scholar 

  19. Lewin, B., L. Cassimeris, V. R. Lingappa, and L. Cassimeris. Cells. Sudbury, MA: Jones & Bartlett Publishers, 2006, 863 pp.

  20. Lodish, H., A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, L. Zipursky, and J. Darnell. Molecular Cell Biology. New York: W.H. Freeman & Company, 2005, 973 pp.

  21. MacKerell, A. D., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616, 1998.

    Google Scholar 

  22. Minehardt, T. J., P. A. Kollman, R. Cooke, and E. Pate. The open nucleotide pocket of the profilin/actin X-ray structure is unstable and closes in the absence of profilin. Biophys. J. 90:2445–2449, 2006.

    Article  Google Scholar 

  23. Mofrad, M. R. K. Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 41:433–453, 2009.

    Article  Google Scholar 

  24. Mofrad, M. R. K., and R. D. Kamm. Introduction, with the biological basis for cell mechanics. In: Cytoskeletal Mechanics. Cambridge: Cambridge University Press, 2006, pp. 1–17.

  25. Nelson, P. Biological Physics. New York: W. H. Freeman, 2004.

    Google Scholar 

  26. Oda, T., M. Iwasa, T. Aihara, Y. Maeda, and A. Narita. The nature of the globular- to fibrous-actin transition. Nature 457:441–445, 2009.

    Article  Google Scholar 

  27. Otterbein, L. R., P. Graceffa, and R. Dominguez. The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711, 2001.

    Article  Google Scholar 

  28. Palmer, A., T. G. Mason, J. Xu, S. C. Kuo, and D. Wirtz. Diffusing wave spectroscopy microrheology of actin filament networks. Biophys. J. 76:1063–1071, 1999.

    Article  Google Scholar 

  29. Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802, 2005.

    Article  Google Scholar 

  30. Popov, E. P. Engineering Mechanics of Solids. Upper Saddle River, NJ: Prentice Hall, 1998.

  31. Sadd, M. H. Elasticity: Theory, Applications, and Numerics. St Louis, MO: Academic Press, 2004.

  32. Schlick, T., R. D. Skeel, A. T. Brunger, L. V. Kale, J. A. Board, J. Hermans, and K. Schulten. Algorithmic challenges in computational molecular biophysics. J. Comput. Phys. 151:9–48, 1999.

    Google Scholar 

  33. Sotomayor, M., and K. Schulten. Single-molecule experiments in vitro and in silico. Science 316:1144–1148, 2007.

    Article  Google Scholar 

  34. Stuart, S. J., A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112:6472–6486, 2000.

    Article  Google Scholar 

  35. Timoshenko, S. Theory of Elasticity. New York: McGraw-Hill Companies, 1970.

  36. Tuszynski, J. A., J. A. Brown, and D. Sept. Models of the collective behavior of proteins in cells: tubulin, actin and motor proteins. J. Biol. Phys. 29:401–428, 2003.

    Article  Google Scholar 

  37. van Duin, A. C. T., S. Dasgupta, F. Lorant, and W. A. Goddard. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105:9396–9409, 2001.

    Article  Google Scholar 

  38. Vikhorev, P. G., N. N. Vikhoreva, and A. Månsson. Bending flexibility of actin filaments during motor-induced sliding. Biophys. J. 95:5809–5819, 2008.

    Article  Google Scholar 

  39. Wakabayashi, K., Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:2422–2435, 1994.

    Article  Google Scholar 

  40. Wang, Y. L. Analysis of microtubule curvature. In: Cell Mechanics, edited by Y. L. Wang and D. E. Discher. Academic Press, 2007, p. 496.

  41. Zheng, X., K. Diraviyam, and D. Sept. Nucleotide effects on the structure and dynamics of actin. Biophys. J. 93:1277–1283, 2007.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank A. R. Khoei for his valuable support and M. J. Abdolhosseini Qomi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghodsi.

Additional information

Associate Editor Muhammad Zaman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghodsi, H., Kazemi, M.T. Elastic Properties of Actin Assemblies in Different States of Nucleotide Binding. Cel. Mol. Bioeng. 5, 1–13 (2012). https://doi.org/10.1007/s12195-011-0181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0181-z

Keywords

Navigation