Skip to main content
Log in

Dependence of Zonal Chondrocyte Water Transport Properties on Osmotic Environment

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Objective The increasing concentration of proteoglycans from the surface to the deep zone of articular cartilage produces a depth-dependent gradient in fixed charge density, and therefore extracellular osmolarity, which may vary with loading conditions, growth and development, or disease. In this study we examine the relationship between in situ variations in osmolarity on chondrocyte water transport properties. Chondrocytes from the depth-dependent zones of cartilage, effectively preconditioned in varying osmolarities, were used to probe this relationship. Design First, depth variation in osmolarity of juvenile bovine cartilage under resting and loaded conditions was characterized using a combined experimental/theoretical approach. Zonal chondrocytes were isolated into two representative “baseline” osmolarities chosen from this analysis to reflect in situ conditions. Osmotic challenge was then used as a tool for determination of water transport properties at each of these baselines. Cell calcium signaling was monitored simultaneously as a preliminary examination of osmotic baseline effects on cell signaling pathways. Results Osmotic baseline exhibits a significant effect on the cell membrane hydraulic permeability of all zonal subpopulations but not on cell water content or incidence of calcium signaling. Conclusions Chondrocyte properties can be sensitive to changes in baseline osmolarity, such as those occurring during OA progression (decrease) and de novo tissue synthesis (increase). Care should be taken in comparing chondrocyte properties across zones when cells are tested in vitro in non-physiologic culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ateshian G. A. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J. Biomech. Eng. 2007, 129, 240–249

    Article  Google Scholar 

  2. Ateshian G. A., K. D. Costa, C. T. Hung. A theoretical analysis of water transport through chondrocytes. Biomech. Model Mechanobiol. 6: 91–101, 2007

    Article  Google Scholar 

  3. Ateshian G. A., B. J. Ellis, J. A. Weiss. Equivalence between short-time biphasic and incompressible elastic material responses. J. Biomech. Eng. 129: 405–412, 2007

    Article  Google Scholar 

  4. Ateshian G. A., M. Likhitpanichkul, C. T. Hung. A mixture theory analysis for passive transport in osmotic loading of cells. J. Biomech. 39: 464–475, 2006

    Google Scholar 

  5. Ateshian, G. A., V. Rajan, N. O. Chahine, C. E. Canal, and C. T. Hung. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. (in review)

  6. Aydelotte M. B., R. R. Greenhill, K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect. Tissue Res. 18: 223–234, 1988

    Article  Google Scholar 

  7. Aydelotte M. B., K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18: 205–222, 1988

    Article  Google Scholar 

  8. Azeloglu E. U., M. B. Albro, V. A. Thimmappa, G. A. Ateshian, K. D. Costa. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol. Heart Circ. Physiol. 294: H1197–H1205, 2008

    Article  Google Scholar 

  9. Burton-Wurster N., M. Vernier-Singer, T. Farquhar, G. Lust. Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J. Orthop. Res. 11: 717–729, 1993

    Article  Google Scholar 

  10. Bush P. G., A. C. Hall. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J. Orthop. Res. 19: 768–778, 2001

    Article  Google Scholar 

  11. Bush P. G., A. C. Hall. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J. Cell. Physiol. 187: 304–314, 2001

    Article  Google Scholar 

  12. Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. Part A, 2008

  13. Chao P. G., Z. Tang, E. Angelini, A. C. West, K. D. Costa, C. T. Hung. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J. Biomech. 38: 1273–1281, 2005

    Article  Google Scholar 

  14. Chao P. H., A. C. West, C. T. Hung. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am. J. Physiol. Cell. Physiol. 291: C718–C725, 2006

    Article  Google Scholar 

  15. Darling E. M., S. Zauscher, F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14: 571–579, 2006

    Article  Google Scholar 

  16. Elmoazzen H. Y., J. A. Elliott, L. E. McGann. The effect of temperature on membrane hydraulic conductivity. Cryobiology 45: 68–79, 2002

    Article  Google Scholar 

  17. Erickson G. R., L. G. Alexopoulos, F. Guilak. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J. Biomech. 34: 1527–1535, 2001

    Article  Google Scholar 

  18. Farndale R. W., D. J. Buttle, A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883: 173–177, 1986

    Google Scholar 

  19. Freed L. E., J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, R. Langer. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27: 11–23, 1993

    Article  Google Scholar 

  20. Frijns A. J. H., J. M. Huyghe, J. D. Janssen. Validation of the quadriphasic mixture theory for intervertebral disc tissue. Int. J. Eng. Sci. 35: 1419–1429, 1997

    Article  MATH  Google Scholar 

  21. Guilak F., G. R. Erickson, H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82: 720–727, 2002

    Google Scholar 

  22. Guilak F., A. Ratcliffe, V. C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthop. Res. 13: 410–421, 1995

    Article  Google Scholar 

  23. Hopewell B., J. P. Urban. Adaptation of articular chondrocytes to changes in osmolality. Biorheology 40: 73–77, 2003

    Google Scholar 

  24. Hung C. T., M. A. LeRoux, G. D. Palmer, P. H. Chao, S. Lo, W. B. Valhmu. Disparate aggrecan gene expression in chondrocytes subjected to hypotonic and hypertonic loading in 2D and 3D culture. Biorheology 40: 61–72, 2003

    Google Scholar 

  25. Kedem O., A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27: 229–246, 1958

    Article  Google Scholar 

  26. Kerrigan M. J., A. C. Hall. Control of chondrocyte regulatory volume decrease (RVD) by [Ca(2+)](i) and cell shape. Osteoarthritis Cartilage 16: 312–322, 2008

    Article  Google Scholar 

  27. Kerrigan M. J., C. S. Hook, A. Qusous, A. C. Hall. Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J. Cell. Physiol. 209: 481–492, 2006

    Article  Google Scholar 

  28. Kim T. K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage 11: 653–664, 2003

    Article  Google Scholar 

  29. Lai W. M., J. S. Hou, V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113: 245–258, 1991

    Article  Google Scholar 

  30. Lanir Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16: 1–12, 1983

    Article  Google Scholar 

  31. Lucke B., M. McCutcheon. The living cell as an osmotic system and its permeability to water. Physiol. Rev. 12: 68–138, 1932

    Google Scholar 

  32. Malgaroli A., D. Milani, J. Meldolesi, T. Pozzan. Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J. Cell. Biol. 105: 2145–2155, 1987

    Article  Google Scholar 

  33. Maroudas A., H. Evans. A study of ionic equilibria in cartilage. Connect. Tissue Res. 1: 69–77, 1972

    Article  Google Scholar 

  34. Maroudas A., I. Ziv, N. Weisman, M. Venn. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology 22: 159–169, 1985

    Google Scholar 

  35. Marshall K. W., D. J. Mikulis, B. M. Guthrie. Quantitation of articular cartilage using magnetic resonance imaging and three-dimensional reconstruction. J. Orthop. Res. 13: 814–823, 1995

    Article  Google Scholar 

  36. Mauck R. L., S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, C. T. Hung. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9: 597–611, 2003

    Article  Google Scholar 

  37. McGann L. E., M. Stevenson, K. Muldrew, N. Schachar. Kinetics of osmotic water movement in chondrocytes isolated from articular cartilage and applications to cryopreservation. J. Orthop. Res. 6: 109–115, 1988

    Article  Google Scholar 

  38. Mobasheri A., E. Trujillo, S. Bell, S. D. Carter, P. D. Clegg, P. Martin-Vasallo, D. Marples. Aquaporin water channels AQP1 and AQP3, are expressed in equine articular chondrocytes. Vet. J. 168: 143–150, 2004

    Article  Google Scholar 

  39. Mow V. C., S. C. Kuei, W. M. Lai, C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102: 73–84, 1980

    Article  Google Scholar 

  40. Overbeek J. T. The Donnan equilibrium. Prog. Biophys. Biophys. Chem. 6: 57–84, 1956

    Google Scholar 

  41. Palmer G. D., P. H. Chao, Ph. F. Raia, R. L. Mauck, W. B. Valhmu, C. T. Hung. Time-dependent aggrecan gene expression of articular chondrocytes in response to hyperosmotic loading. Osteoarthritis Cartilage 9: 761–770, 2001

    Article  Google Scholar 

  42. Ponder E. 1948. Hemolysis and Related Phenomena. New York: Grune and Stratton. 398 pp

    Google Scholar 

  43. Pritchard, S., B. J. Votta, S. Kumar, and F. Guilak. Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes. Osteoarthritis Cartilage, 2008

  44. Riesle J., A. P. Hollander, R. Langer, L. E. Freed, G. Vunjak-Novakovic. Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J. Cell. Biochem. 71: 313–327, 1998

    Article  Google Scholar 

  45. Sanchez J. C., R. J. Wilkins. Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 137: 173–182, 2004

    Article  Google Scholar 

  46. Shieh A. C., K. A. Athanasiou. Biomechanics of single zonal chondrocytes. J. Biomech. 39: 1595–1602, 2006

    Article  Google Scholar 

  47. Ting-Beall H. P., D. Needham, R. M. Hochmuth. Volume and osmotic properties of human neutrophils. Blood 81: 2774–2780, 1993

    Google Scholar 

  48. Torzilli P. A., R. Grigiene, C. Huang, S. M. Friedman, S. B. Doty, A. L. Boskey, G. Lust. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30: 1–9, 1997

    Article  Google Scholar 

  49. Urban J. P., A. C. Hall, K. A. Gehl. Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell. Physiol. 154: 262–270, 1993

    Article  Google Scholar 

  50. Venn M., A. Maroudas. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36: 121–129, 1977

    Article  Google Scholar 

  51. Yellowley C. E., J. C. Hancox, H. J. Donahue. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes. J. Cell. Biochem. 86: 290–301, 2002

    Article  Google Scholar 

  52. Youn I., J. B. Choi, L. Cao, L. A. Setton, F. Guilak. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage 14: 889–897, 2006

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health, USA (AR052871) and by an NSF Graduate Research Fellowship (ESO). The authors wish to thank Richard Shin, Angie Cheng, Pojen Deng, Sarah Kramer, and David Mao for performing image analysis and biochemical assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswald, E.S., Chao, PH.G., Bulinski, J.C. et al. Dependence of Zonal Chondrocyte Water Transport Properties on Osmotic Environment. Cel. Mol. Bioeng. 1, 339–348 (2008). https://doi.org/10.1007/s12195-008-0026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0026-6

Keywords

Navigation