Skip to main content
Log in

Body iron metabolism and pathophysiology of iron overload

  • Progress in Hematology
  • Transfusional iron overload and iron chelation therapy
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341:1986–95.

    Article  CAS  PubMed  Google Scholar 

  2. McKie AT, Latunde-Dada GO, Miret S, et al. Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans. 2002;30:722–4.

    Article  CAS  PubMed  Google Scholar 

  3. Trinder D, Fox C, Vautier G, Olynyk JK. Molecular pathogenesis of iron overload. Gut. 2002;51:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sargent PJ, Farnaud S, Evans RW. Structure/function overview of proteins involved in iron storage and transport. Curr Med Chem. 2005;12:2683–93.

    Article  CAS  PubMed  Google Scholar 

  5. Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–87.

    Article  CAS  PubMed  Google Scholar 

  6. Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia. Blood. 1997;89:739–61.

    CAS  PubMed  Google Scholar 

  7. Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med. 2000;343:327–31.

    Article  CAS  PubMed  Google Scholar 

  8. Ikuta K, Zak O, Aisen P. Recycling, degradation and sensitivity to the synergistic anion of transferrin in the receptor-independent route of iron uptake by human hepatoma (HuH–7) cells. Int J Biochem Cell Biol. 2004;36:340–52.

    Article  CAS  PubMed  Google Scholar 

  9. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA. 2006;103:13612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schranzhofer M, Schifrer M, Cabrera JA, et al. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood. 2006;107:4159–67.

    Article  CAS  PubMed  Google Scholar 

  11. Fleming MD. The genetics of inherited sideroblastic anemias. Semin Hematol. 2002;39:270–81.

    Article  CAS  PubMed  Google Scholar 

  12. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10.

    Article  CAS  PubMed  Google Scholar 

  13. Inamura J, Ikuta K, Jimbo J, et al. Upregulation of hepcidin by interleukin-1beta in human hepatoma cell lines. Hepatol Res. 2005;33:198–205.

    Article  CAS  PubMed  Google Scholar 

  14. Ganz T. Hepcidin in iron metabolism. Curr Opin Hematol. 2004;11:251–4.

    Article  CAS  PubMed  Google Scholar 

  15. Bridle KR, Frazer DM, Wilkins SJ, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet. 2003;361:669–73.

    Article  CAS  PubMed  Google Scholar 

  16. Pietrangelo A. Hemochromatosis: an endocrine liver disease. Hepatology. 2007;46:1291–301.

    Article  CAS  PubMed  Google Scholar 

  17. Gardenghi S, Marongiu MF, Ramos P, et al. Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood. 2007;109:5027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cazzola M, Huebers HA, Sayers MH, MacPhail AP, Eng M, Finch CA. Transferrin saturation, plasma iron turnover, and transferrin uptake in normal humans. Blood. 1985;66:935–9.

    CAS  PubMed  Google Scholar 

  19. Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23:185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Koorts AM, Viljoen M. Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem. 2007;113:30–54.

    Article  CAS  PubMed  Google Scholar 

  21. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.

    Article  PubMed  Google Scholar 

  22. Jacobs A, Beamish MR, Allison M. The measurement of circulating ferritin. J Clin Pathol. 1972;25:1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobs A, Miller F, Worwood M, Beamish MR, Wardrop CA. Ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. Br Med J. 1972;4:206–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piperno A. Classification and diagnosis of iron overload. Haematologica. 1998;83:447–55.

    CAS  PubMed  Google Scholar 

  25. Saito H, Hayashi D, Ohya T, Ohya F, Yamada H. Clinical evaluation on serum ferritin (author’s transl). Rinsho Ketsueki. 1979;20:1317–25.

    CAS  PubMed  Google Scholar 

  26. Galanello R, Piga A, Forni GL, et al. Phase II clinical evaluation of deferasirox, a once-daily oral chelating agent, in paediatric patients with β-thalassaemia major. Haematologica. 2006;91:1343–51.

    CAS  PubMed  Google Scholar 

  27. Cappellini MD, Cohen A, Piga A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood. 2006;107:3455–62.

    Article  CAS  PubMed  Google Scholar 

  28. Jensen PD, Jensen FT, Christensen T, Eiskjaer H, Baandrup U, Nielsen JL. Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood. 2003;101:4632–9.

    Article  CAS  PubMed  Google Scholar 

  29. Takatoku M, Uchiyama T, Okamoto S, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.

    Article  CAS  PubMed  Google Scholar 

  30. Gattermann N. Guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload. Leuk Res. 2007;31(Suppl 3):S10–5.

    Article  CAS  PubMed  Google Scholar 

  31. Olivieri NF, Brittenham GM, Matsui D, et al. Iron-chelation therapy with oral deferiprone in patients with thalassemia major. N Engl J Med. 1995;332:918–22.

    Article  CAS  PubMed  Google Scholar 

  32. Long JA Jr, Doppman JL, Nienhus AW, Mills SR. Computed tomographic analysis of beta-thalassemic syndromes with hemochromatosis: pathologic findings with clinical and laboratory correlations. J Comput Assist Tomogr. 1980;4:159–65.

    Article  Google Scholar 

  33. Brittenham GM, Farrell DE, Harris JW, et al. Magnetic-susceptibility measurement of human iron stores. N Engl J Med. 1982;307:1671–5.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson LJ, Westwood MA, Holden S, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol. 2004;127:348–55.

    Article  CAS  PubMed  Google Scholar 

  35. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem. 2002;91:9–18.

    Article  CAS  PubMed  Google Scholar 

  36. Yen AW, Fancher TL, Bowlus CL. Revisiting hereditary hemochromatosis: current concepts and progress. Am J Med. 2006;119:391–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pietrangelo A. Hereditary hemochromatosis—a new look at an old disease. N Engl J Med. 2004;350:2383–97.

    Article  CAS  PubMed  Google Scholar 

  38. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.

    Article  CAS  PubMed  Google Scholar 

  39. Franchini M. Hereditary iron overload: update on pathophysiology, diagnosis, and treatment. Am J Hematol. 2006;81:202–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bonkovsky HL, Lambrecht RW, Shan Y. Iron as a co-morbid factor in nonhemochromatotic liver disease. Alcohol. 2003;30:137–44.

    Article  CAS  PubMed  Google Scholar 

  41. Zurlo MG, De Stefano P, Borgna-Pignatti C, et al. Survival and causes of death in thalassaemia major. Lancet. 1989;2:27–30.

    Article  CAS  PubMed  Google Scholar 

  42. McGowan JH, Cleland JG. Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am Heart J. 2003;146:388–97.

    Article  PubMed  Google Scholar 

  43. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–9.

    Article  CAS  PubMed  Google Scholar 

  44. Telfer PT, Prestcott E, Holden S, Walker M, Hoffbrand AV, Wonke B. Hepatic iron concentration combined with long-term monitoring of serum ferritin to predict complications of iron overload in thalassaemia major. Br J Haematol. 2000;110:971–7.

    Article  CAS  PubMed  Google Scholar 

  45. Olivieri NF. The β-thalassemias. N Engl J Med. 1999;341:99–109.

    Article  CAS  PubMed  Google Scholar 

  46. Fung EB, Harmatz PR, Lee PD, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135:574–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kohgo.

About this article

Cite this article

Kohgo, Y., Ikuta, K., Ohtake, T. et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88, 7–15 (2008). https://doi.org/10.1007/s12185-008-0120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-008-0120-5

Keywords

Navigation