Skip to main content
Log in

Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy

  • Review article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Radionuclides of rare earth elements are gaining importance as emerging therapeutic agents in nuclear medicine. β -particle emitter 142Pr [T 1/2 = 19.12 h, E β  = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the praseodymium-141 (100% abundant) radioisotopes. Production routes and therapy aspects of 142Pr will be reviewed in this paper. However, 142Pr produces via 141Pr(n, γ)142Pr reaction by irradiation in a low-fluence reactor; 142Pr cyclotron produced, could be achievable. 142Pr due to its high β -emission and low specific gamma γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Internal radiotherapy using 142Pr can be classified into two sub-categories: (1) unsealed source therapy (UST), (2) brachytherapy. UST via 142Pr-HA and 142Pr-DTPA in order for radiosynovectomy have been proposed. In addition, 142Pr Glass seeds and 142Pr microspheres have been utilized for interstitial brachytherapy of prostate cancer and intraarterial brachytherapy of arteriovenous malformation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mushtaq A. Reactors are indispensable for radioisotope production. Ann Nucl Med. 2010;24:759–60.

    Article  PubMed  Google Scholar 

  2. Hoefnagel CA. Radionuclide cancer therapy. Ann Nucl Med. 1998;12:61–70.

    Article  PubMed  CAS  Google Scholar 

  3. Mikolajczak R, Parus JL. Reactor produced beta-emitting nuclides for nuclear medicine. World J Nucl Med. 2005;4:184–90.

    Google Scholar 

  4. Sadeghi M, Enferadi M, Shirazi A. External and internal radiation therapy: past and future directions. J Can Res Ther. 2010;6:239–48.

    Article  CAS  Google Scholar 

  5. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46:4–12.

    Google Scholar 

  6. Tarkanyi F, Takacs S, Hermanne A, Ditroi F, Kiraly B, Baba M, et al. Investigation of production of the therapeutic radioisotope 165Er by proton induced reactions on erbiumin comparison with other production routes. Appl Radiat Isot. 2009;67:243–7.

    Article  PubMed  CAS  Google Scholar 

  7. Jackson M. Magnetism of rare earth. IRM Quarterly. 2000;3:1–8.

    Google Scholar 

  8. Hussein SG. Magnetic moments and low-lying energy levels in 142Pr. Open access dissertations and theses 1973. http://digitalcommons.mcmaster.ca/opendissertations/3672.

  9. Jung JW, Reece WD. Dosimetric characterization of 142Pr glass seeds for brachytherapy. Appl Radiat Isot. 2008;66:441–9.

    Article  PubMed  CAS  Google Scholar 

  10. Vimalnath KV, Das MK, Venkatesh M, Ramamoorthy N. Production logistics and prospects of 142Pr and 143Pr for radionuclide therapy (RNT) applications. In: Proceedings of the 5th International Conference on Isotopes (5ICI), Brussels, Belgium, 25–29 April 2005;5ICI:103–107.

  11. Das MK, Nair KVV, Mukherjee A, Sarma HD, Pal S, Venkatesh M et al. Preparation and evaluation of [142Pr/143Pr]-hydroxyapatite (HA) and [142Pr]-DTPA for application in radionuclide therapy. In: Proceedings of the 5th International Conference on Isotopes (5ICI), Brussels, Belgium, 25–29 April 2005;5ICI:521–6.

  12. Zeisler SK, Becker DW, Weber K. Szilard–Chalmers reaction in praseodymium compounds. J Radioanal Nucl Chem. 1999;240:637–41.

    Article  CAS  Google Scholar 

  13. Lee SW, Reece WD. Dose calculation of 142Pr microspheres as a potential treatment for arteriovenous malformations. Phys Med Biol. 2005;50:151–66.

    Article  PubMed  Google Scholar 

  14. Lee SW. Beta dose calculation in human arteries for various brachytherapy seed types. Doctoral dissertation, Texas A&M University. http://hdl.handle.net/1969.1/42. Accessed 30 Sept 2004.

  15. 142Pr glass seeds for the brachytherapy of prostate cancer. Doctoral dissertation, Texas A&M University. http://hdl.handle.net/1969.1/5738. Accessed 17 Sept 2007.

  16. Bohm TD, Mourtada FA, Das RK. Dose rate table for a 32P intravascular brachytherapy source from Monte Carlo calculations. Med Phys. 2001;28:93–103.

    Google Scholar 

  17. Sadeghi M, Bakht MK, Mokhtari L. Practicality of the cyclotron production of radiolanthanide 142Pr: a potential for therapeutic applications and biodistribution studies. J Radioanal Nucl Chem. 2011. doi:10.1007/s10967-011-1033-y.

  18. Mayles P, Nahum A, Rosenwald JC. Handbook of radiotherapy physics: theory and practice. London: Taylor & Francis; 2007.

    Book  Google Scholar 

  19. Podgorsak EB. Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency IAEA; 2005.

    Google Scholar 

  20. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WG, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.

    Article  PubMed  CAS  Google Scholar 

  21. Hermanne A, Tárkányi F, Takács S, Ditrói F, Baba M, Ohtshuki T, et al. Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instr Meth B. 2009;267:727–36.

    Article  CAS  Google Scholar 

  22. Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol. 1996;41:1871–84.

    Article  PubMed  CAS  Google Scholar 

  23. Dale RG, Jones B. Enhanced normal tissue doses caused by tumour shrinkage during brachytherapy. Br J Radiol. 1999;72:499–501.

    PubMed  CAS  Google Scholar 

  24. Carlsson J, Eriksson V, Stenerlow B, Lundqvist H. Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy. Eur J Nucl Med Mol Imaging. 2006;33:1185–95.

    Article  PubMed  CAS  Google Scholar 

  25. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43:1095–101.

    Article  PubMed  CAS  Google Scholar 

  26. Fowler JF, Chappell RJ, Ritter MA. Is α/β for prostate tumours really low? Int J Radiat Oncol Biol Phys. 2001;50:1021–31.

    Article  PubMed  CAS  Google Scholar 

  27. Brenner DJ. Hypofractionation for prostate cancer radiotherapy—what are the issues? Int J Radiat Oncol Biol Phys. 2003;57:912–4.

    Article  PubMed  Google Scholar 

  28. Nahum AE, Movsas B, Horwitz EM, Stobbe CC, Chapman JD. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the α/β ratio. Int J Radiat Oncol Biol Phys. 2003;57:391–401.

    Article  PubMed  Google Scholar 

  29. Movsas B, Chapman JD, Hanlon AL, Horwitz EM, Greenberg RE, Stobbe C, et al. Hypoxic prostate/muscle PO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology. 2002;60:634–9.

    Article  PubMed  Google Scholar 

  30. Parker C, Milosevic M, Toi A, Sweet J, Panzarella T, Bristow R, et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;58:750–7.

    Article  PubMed  Google Scholar 

  31. Nag S, Dobelbower R, Glasgow G, Gustafson G, Syed N, Thomadsen B, et al. Intersociety standards for the performance of brachytherapy: a joint report from ABS, ACMP and ACRO. Crit Rev Oncol Hematol. 2003;48:1–17.

    Article  PubMed  Google Scholar 

  32. Regueiro C. Brachytherapy: basic concepts, current clinical indications and future perspectives. Rev Oncol. 2002;4:512–6.

    Google Scholar 

  33. Loeb S, Nadler RB. Management of the complications of external beam radiotherapy and brachytherapy. Curr Urol Rep. 2006;7:200–8.

    Article  PubMed  Google Scholar 

  34. Saito S, Nagata H, Kosugi M, Toya K. Brachytherapy with permanent seed implantation. Int J Clin Oncol. 2007;12:395–7.

    Article  PubMed  Google Scholar 

  35. Broens P, Van Limbergen E, Penninckx F. Clinical and manometric effects of combined external beam irradiation and brachytherapy for anal cancer. Int J Colorectal Dis. 1998;13:68–72.

    Article  PubMed  CAS  Google Scholar 

  36. Julow J, Viola A, Majo T, Valálik I, Sági S, Mange L, et al. Iodine-125 brachytherapy of brain stem tumors. Strahlenther Onkol. 2004;180:449–54.

    Article  PubMed  Google Scholar 

  37. John M, Shroff S, Farb A, Virmani R. Local arterial responses to 32P β-emitting stents. Cardiovasc Radiat Med. 2001;2:143–50.

    Article  PubMed  CAS  Google Scholar 

  38. Golombeck M, Heise S, Schloesser K, Schuessler B, Schweickert H. Intravascular brachytherapy with radioactive stents produced by ion implantation. Nucl Instr Meth Phys Res. 2003;206:495–500.

    Article  CAS  Google Scholar 

  39. Sioshansi P, Bricault R. Low energy 103Pd gamma (X-ray) source for vascular brachytherapy. Cardiovasc Radiat Med. 1999;3:278–87.

    Article  Google Scholar 

  40. Saxena SK, Sharma SD, Dash A, Venkatesh M. Development of a new design 125I-brachytherapy seed for its application in the treatment of eye and prostate cancer. Appl Radiat Isot. 2009;67:1421–5.

    Article  PubMed  CAS  Google Scholar 

  41. Sadeghi M, Tahri F, Hoseini H, Tenreiro C. Monte Carlo calculated TG-60 dosimetry parameters for the β emitter 153Sm brachytherapy source. Med Phys. 2010;37:5370–5.

    Article  PubMed  Google Scholar 

  42. MCNP—A general Monte Carlo N-particle transport code, Version 5, X-5 Monte Carlo Team, Los Alamos National Laboratory; 2008.

  43. Minar E, Pokrajac B, Ahmadi R, Maca T, Seitz W, Stuempflen A, et al. Brachytherapy for prophylaxis of restenosis after longsegment femoropopliteal angioplasty: pilot study. Radiology. 1998;208:173–9.

    PubMed  CAS  Google Scholar 

  44. Minar E, Pokrajac B, Maca T, Ahmadi R, Fellner C, Mittelboeck M, et al. Endovascular brachytherapy for prophylaxis of restenosis after femoropopliteal angioplasty: results of a prospective, randomized study. Circulation. 2000;102:2694–9.

    PubMed  CAS  Google Scholar 

  45. Pokrajac B, Poetter R, Maca T, Fellner C, Mittelboeck M, Ahmadi R, et al. Intraarterial 192Ir HDR brachytherapy for prophylaxis of restenosis after femoropopliteal percutaneous transluminal angioplasty: the prospective randomized Vienna-2 trial radiotherapy parameters and risk factor analysis. Int J Radiat Oncol Biol Phys. 2000;48:923–31.

    Article  PubMed  CAS  Google Scholar 

  46. Pokrajac B, Poetter R, Wolfram RM, Budinsky AC, Kirisits C, Lileg B, et al. Endovascular brachytherapy prevents restenosis after femoropopliteal angioplasty: results of the Vienna-3 randomised multicenter study. Radiother Oncol. 2005;74:3–9.

    Article  PubMed  Google Scholar 

  47. Waksman R, Laird JR, Jurkovitz CT, Lansky AJ, Gerrits F, Kosinski AS, et al. Intravascular radiation therapy following balloon angioplasty of narrowed femoro-popliteal arteries to prevent restenosis: results of the PARIS feasibility clinical trial. J Vasc Interv Radiol. 2001;12:915–21.

    Article  PubMed  CAS  Google Scholar 

  48. Davidson AS, Morgan MK. The embryologic basis for the anatomy of the cerebral vasculature related to arteriovenous malformations. J Clin Neurosci. 2011. doi:10.1016/j.jocn.2010.12.004.

  49. Jeffree RL, Stoodley MA. Postnatal development of arteriovenous malformations. Pediatr Neurosurg. 2009;45:296–304.

    Article  PubMed  Google Scholar 

  50. Achrol AS, Guzman R, Varga M, Adler JR, Steinberg GK, Chang SD. Pathogenesis and radiobiology of brain arteriovenous malformations: implications for risk stratification in natural history and posttreatment course. Neurosurg Focus. 2009;26:E9.

    Article  PubMed  Google Scholar 

  51. Kim H, Pawlikowska L, Chen Y, Su H, Yang GY, Young WL. Brain arteriovenous malformation biology relevant to hemorrhage and implication for therapeutic development. Stroke. 2009;40:S95–7.

    Article  PubMed  CAS  Google Scholar 

  52. Das MK, Nair KV, Ananthkrishnan M, Venkatesh M, Ramamoorthy N. Preparation and evaluation of 142Pr hydroxyapatite crystals: a potential therapeutic agent for radiosynovectomy. Abstracts of SNMICON 2002. Indian J Nucl Med. 2002;17:7–8.

    Google Scholar 

  53. Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK, et al. Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential radiopharmaceuticals for radiation synovectomy. J Nucl Med. 1993;34:1536–42.

    PubMed  CAS  Google Scholar 

  54. Unni PR, Chaudhari PR, Venkatesh M, Ramamoorthy N, Pillai MR. Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy. Nucl Med Biol. 2002;29:199–209.

    Article  PubMed  CAS  Google Scholar 

  55. Deutsch E, Brodack JW, Deutsch KF. Radiation synovectomy revisited. Eur J Nucl Med. 1993;20:1113–27.

    Article  PubMed  CAS  Google Scholar 

  56. Gedik GK, Ugur O, Atilla B, Pekmezci M, Yildirim M, Seven B, et al. Comparison of extraarticular leakage values of radiopharmaceuticals used for radionuclide synovectomy. Ann Nucl Med. 2006;20:183–8.

    Article  PubMed  CAS  Google Scholar 

  57. Gratz S, G6bel D, Behr TM, Herrmann A, Becker W. Correlation between radiation dose, synovial thickness, and efficacy of radiosynoviorthesis. J Rheumatol. 1999;26:1242–9.

    Google Scholar 

  58. G Clunie, Lui D, Cullul I, CW, Edwards J, Ell PJ. 153Sm particulate hydroxyapatite particles for radiation synovectomy: Biodistribution data for chronic knee synovitis. J Nucl Med. 1995;36:51–7.

  59. Unni PR, Pillai MA. 166Ho labelled hydroxyapatite particles for radiosynovectomy. Book of extended synopsis, International Seminar on Therapeutic Applications of Radiopharmaceuticals. IAEA; 1999. p 148–9.

  60. Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S et al. Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med. 2010. doi:10.1007/s12149-011-0467-1.

  61. Armpilia CI, Dale RG, Coles IP, Jones B, Antipas V. The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants. Int J Radiat Oncol Biol Phys. 2003;55:378–85.

    Article  PubMed  CAS  Google Scholar 

  62. Bersillon O, Blachot J. JEFF-3.11 radioactive decay data file, Compiled for the NEA Data Bank. http://www.nucleide.org/NucData.htm. Accessed Nov 2007.

  63. NEA. JANIS 3.2. DVD a java-based nuclear data display program-2010. http://www.oecd-nea.org/pub/ret.cgi?div=SCI-DB#6907. Accessed Jun 2010.

  64. Verdieck EV, Miller JM. Radiative capture and neutron emission in La139 + α and Ce142 + p. Phys Rev. 1967;153:1253–61.

    Article  CAS  Google Scholar 

  65. Furukawa M. Excitation functions for proton-induced reactions of 140Ce and 142Ce up to Ep = 15 MeV. Nucl Phys A. 1966;90:253–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakht, M.K., Sadeghi, M. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann Nucl Med 25, 529–535 (2011). https://doi.org/10.1007/s12149-011-0505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-011-0505-z

Keywords

Navigation