Skip to main content
Log in

Integrating individual search and navigation behaviors in mechanistic movement models

  • Original paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Understanding complex movement behaviors via mechanistic models is one key challenge in movement ecology. We built a theoretical simulation model using evolutionarily trained artificial neural networks (ANNs) wherein individuals evolve movement behaviors in response to resource landscapes on which they search and navigate. We distinguished among non-oriented movements in response to proximate stimuli, oriented movements utilizing perceptual cues from distant targets, and memory mechanisms that assume prior knowledge of a target’s location and then tested the relevance of these three movement behaviors in relation to size of resource patches, predictability of resource landscapes, and the occurrence of movement barriers. Individuals were more efficient in locating resources under larger patch sizes and predictable landscapes when memory was advantageous. However, memory was also frequently used in unpredictable landscapes with intermediate patch sizes to systematically search the entire spatial domain, and because of this, we suggest that memory may be important in explaining super-diffusion observed in many empirical studies. The sudden imposition of movement barriers had the greatest effect under predictable landscapes and temporarily eliminated the benefits of memory. Overall, we demonstrate how movement behaviors that are linked to certain cognitive abilities can be represented by state variables in ANNs and how, by altering these state variables, the relevance of different behaviors under different spatiotemporal resource dynamics can be tested. If adapted to fit empirical movement paths, methods described here could help reveal behavioral mechanisms of real animals and predict effects of anthropogenic landscape changes on animal movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alerstam T (2006) Conflicting evidence about long-distance animal navigation. Science 313:791–794

    Article  PubMed  CAS  Google Scholar 

  • Armsworth PR, Roughgarden JE (2005) The impact of directed versus random movement on population dynamics and biodiversity patterns. Am Nat 165:449–465

    Article  PubMed  Google Scholar 

  • Bailey DW, Gross J, Laca E, Rittenhouse L, Coughenour M, Swift D, Sims P (1996) Mechanisms that result in large herbivore grazing distribution patterns. J Range Manage 49:386–400

    Article  Google Scholar 

  • Bar-David S, Bar-David I, Cross P, Ryan S, Knechtel C, Getz W (2009) Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology 90:2467–2479

    Article  PubMed  Google Scholar 

  • Bartumeus F (2009) Behavioral intermittence, Levy patterns, and randomness in animal movement. Oikos 118:488–494

    Google Scholar 

  • Bartumeus FM, Da Luz G, Viswanathan G, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087

    Article  Google Scholar 

  • Barraquand F, Inchausti P, Bretagnolle V (2009) Cognitive abilities of a central place forager interact with prey spatial aggregation in their effect on intake rate. Anim Behav 78:505–514

    Article  Google Scholar 

  • Baxt W (1991) Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 115:843–848

    PubMed  CAS  Google Scholar 

  • Bell WJ (1991) Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, London

    Google Scholar 

  • Benhamou S (1994) Spatial memory and searching efficiency. Anim Behav 47:1423–1433

    Article  Google Scholar 

  • Benhamou S (2007) How many animals really do the Levy walk? Ecology 88:1962–1969

    Article  PubMed  Google Scholar 

  • Benhamou S, Bovet P (1989) How animals use their environment—a new look at kinesis. Anim Behav 38:375–383

    Article  Google Scholar 

  • Bennett DA, Tang W (2006) Modelling adaptive, spatially aware, and mobile agents: elk migration in Yellowstone. Int J Geogr Inf Sci 20:1039–1066

    Article  Google Scholar 

  • Biro D, Freeman R, Meade J, Roberts S, Guilford T (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci USA 104:7471–7476

    Article  PubMed  CAS  Google Scholar 

  • Boerger L, Dalziel B, Fryxell J (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11:637–650

    Article  Google Scholar 

  • Boone RB, Thirgood S, Hopcraft J (2006) Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87:1987–1994

    Article  PubMed  Google Scholar 

  • Bonadonna F, Bajzak C, Benhamou S, Igloi K, Jouventin P, Lipp H, Dell’Omo G (2005) Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance. Philos Trans R Soc B 272:489–495

    CAS  Google Scholar 

  • Bovet P, Benhamou S (1991) Optimal sinuosity in central place foraging movements. Anim Behav 42:57–62

    Article  Google Scholar 

  • Bowen BW, Bass A, Chow S, Bostrom M, Bjorndal K, Bolten A, Okuyama T, Bolker B, Epperly S, Lacasella E, Shaver D, Dodd M, Hopkins-Murphy S, Musick J, Swingle M, Rankin-Baransky K, Teas W, Witzell W, Dutton P (2004) Natal homing in juvenile loggerhead turtles (Caretta caretta). Mol Ecol 13:3797–3808

    Article  PubMed  Google Scholar 

  • Chow TT, Zhang G, Lin Z, Song C (2002) Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build 34:103–109

    Article  Google Scholar 

  • Conradt L, Bodsworth E, Roper T, Thomas C (2000) Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Philos Trans R Soc B 267:1505–1510

    CAS  Google Scholar 

  • Croney CC, Adams K, Washington C, Stricklin W (2003) A note on visual, olfactory and spatial cue use in foraging behavior of pigs: indirectly assessing cognitive abilities. Appl Anim Behav Sci 83:303–308

    Article  Google Scholar 

  • Dalziel BD, Morales J, Fryxell J (2008) Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory. Am Nat 172:248–258

    Article  PubMed  Google Scholar 

  • Duvall D, Schuett G (1997) Straight-line movement and competitive mate searching in prairie rattlesnakes, Crotalus viridis viridis. Anim Behav 54:329–334

    Article  PubMed  Google Scholar 

  • Dybowski R, Weller P, Chang R, Gant V (1996) Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 347:1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Edwards AM, Phillips R, Watkins N, Freeman M, Murphy E, Afanasyev V, Buldyrev S, da Luz M, Raposo E, Stanley H, Viswanathan G (2007) Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Fagan WF, Lutscher F, Schneider K (2007) Population and community consequences of spatial subsidies derived from central-place foraging. Am Nat 170:902–915

    Article  PubMed  Google Scholar 

  • Farnsworth KD, Beecham J (1999) How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am Nat 153:509–526

    Article  Google Scholar 

  • Folse L, Packard J, Grant W (1989) AI modeling of animal movements in a heterogeneous habitat. Ecol Model 46:57–72

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1940) The orientation of animals. Kineses, taxes and compass reactions. Clarendon, Oxford

    Google Scholar 

  • Fryxell JM, Hazell M, Borger L, Dalziel BD, Haydon DT, Morales JM et al (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. P Natl Acad Sci USA 105:19114–19119

    Article  CAS  Google Scholar 

  • Gautestad AO, Mysterud I (2005) Intrinsic scaling complexity in animal dispersion and abundance. Am Nat 165:44–55

    Article  PubMed  Google Scholar 

  • Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Natl Acad Sci USA 105:19066–19071

    Article  PubMed  CAS  Google Scholar 

  • Gill F (1988) Trapline foraging by hermit hummingbirds—competition for an undefended, renewable resource. Ecology 69:1933–1942

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading

    Google Scholar 

  • Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins GJE (ed) Foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp 69–93

    Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W, Railsback S, Thulke H, Weiner J, Wiegand T, DeAngelis D (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991

    Article  PubMed  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126

    Article  Google Scholar 

  • Gurarie E, Andrews R, Laidre K (2009) A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12:395–408

    Article  PubMed  Google Scholar 

  • Hancock PA, Milner-Gulland E (2006) Optimal movement strategies for social foragers in unpredictable environments. Ecology 87:2094–2102

    Article  PubMed  Google Scholar 

  • Heinz SK, Strand E (2006) Adaptive patch searching strategies in fragmented landscapes. Evol Ecol 20:113–130

    Article  Google Scholar 

  • Hewitson L, Dumont B, Gordon I (2005) Response of foraging sheep to variability in the spatial distribution of resources. Anim Behav 69:1069–1076

    Article  Google Scholar 

  • Hoffmann G (1983a) The random elements in the systematic search behavior of the desert isopod Hemilepistus reaumuri. Behav Ecol Sociobiol 13:81–92

    Article  Google Scholar 

  • Hoffmann G (1983b) The search behavior of the desert isopod Hemilepistus reaumuri as compared with a systematic search. Behav Ecol Sociobiol 13:93–106

    Article  Google Scholar 

  • Holmgren NA, Norrstrom N, Getz W (2007) Artificial neural networks in models of specialization, guild evolution and sympatric speciation. Philos Trans R Soc B 362:431–440

    Article  Google Scholar 

  • Huse G, Strand E, Giske J (1999) Implementing behaviour in individual-based models using neural networks and genetic algorithms. Evol Ecol 13:469–483

    Article  Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit preytaxis if individual predators use area-restricted search. Am Nat 130:233–270

    Article  Google Scholar 

  • Kramer-Schadt S, Revilla E, Wiegand T, Grimm V (2007) Patterns for parameters in simulation models. Ecol Model 204:553–556

    Article  Google Scholar 

  • Laca EA (1998) Spatial memory and food searching mechanisms of cattle. J Range Manage 51:370–378

    Article  Google Scholar 

  • Mahoney SP, Schaefer J (2002) Hydroelectric development and the disruption of migration in caribou. Biol Conserv 107:147–153

    Article  Google Scholar 

  • Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5:39–53

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra K, Mohan C, Ranka S (1996) Elements of artificial neural networks. MIT, Cambridge

    Google Scholar 

  • Merkle T, Wehner R (2009) How flexible is the systematic search behaviour of desert ants? Anim Behav 77:1051–1056

    Article  Google Scholar 

  • Merkle T, Knaden M, Wehner R (2006) Uncertainty about nest position influences systematic search strategies in desert ants. J Exp Biol 209:3545

    Article  PubMed  Google Scholar 

  • Morales JM, Haydon D, Frair J, Holsiner K, Fryxell J (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445

    Article  Google Scholar 

  • Morales JM, Fortin D, Frair J, Merrill E (2005) Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecol 20:301–316

    Article  Google Scholar 

  • Mueller T, Fagan W (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664

    Article  Google Scholar 

  • Nams VO (2006) Detecting oriented movement of animals. Anim Behav 72:1197–1203

    Article  Google Scholar 

  • Nathan R, Getz W, Revilla E, Holyoak M, Kadmon R, Saltz D et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059

    Article  PubMed  CAS  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  PubMed  Google Scholar 

  • Piou C, Berger U, Grimm V (2009) Proposing an information criterion for individual-based models developed in a pattern-oriented framework. Ecol Model 220:1957–1967

    Article  Google Scholar 

  • Reynolds AM, Rhodes C (2009) The Levy flight paradigm: random search patterns and mechanisms. Ecology 90:877–887

    Article  PubMed  CAS  Google Scholar 

  • Schick RS, Loarie S, Colchero F, Best B, Boustany A, Conde D et al (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350

    Article  PubMed  Google Scholar 

  • Schooley RL, Wiens J (2003) Finding habitat patches and directional connectivity. Oikos 102:559–570

    Article  Google Scholar 

  • Seth AK (2007) The ecology of action selection: insights from artificial life. Philos Trans R Soc B 362:1545

    Article  Google Scholar 

  • Sims DW, Southall E, Humphries N, Hays G, Bradshaw C, Pitchford J, James A, Ahmed M, Brierley A, Hindell M (2008) Scaling laws of marine predator search behaviour. Nature 451:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    PubMed  CAS  Google Scholar 

  • Strand E, Huse G, Giske J (2002) Artificial evolution of life history and behavior. Am Nat 159:624–644

    Article  PubMed  Google Scholar 

  • Tan ZJ, Zou X, Huang S, Zhang W, Jin Z (2002) Random walk with memory enhancement and decay. Phys Rev E 65:1–5

    Google Scholar 

  • Thomson JD (1996) Trapline foraging by bumblebees: I. Persistence of flight-path geometry. Behav Ecol 7:158–164

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland

    Google Scholar 

  • Viswanathan GM, Afanasyev V, Buldyrev S, Murphy E, Prince P, Stanley H (1996) Levy flight search patterns of wandering albatrosses. Nature 381:413–415

    Article  CAS  Google Scholar 

  • Viswanathan GM, Buldyrev S, Havlin S, da Luz M, Raposo E, Stanley H (1999) Optimizing the success of random searches. Nature 401:911–914

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Grimm V (2007) Home range dynamics and population regulation: an individual-based model of the common shrew Sorex ayaneus. Ecol Model 205:397–409

    Article  Google Scholar 

  • Winter Y, Stich K (2005) Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats. J Exp Biol 208:539–548

    Article  PubMed  Google Scholar 

  • Zollner PA, Lima S (1999) Orientational data and perceptual range: real mice aren’t blind. Oikos 84:164–166

    Article  Google Scholar 

Download references

Acknowledgments

We thank Don DeAngelis, Peter Taylor, and two anonymous referees for constructive and helpful comments on an earlier draft of the manuscript. This research was supported by the BEES graduate program at the University of Maryland and NSF grant DEB 0743557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mueller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, T., Fagan, W.F. & Grimm, V. Integrating individual search and navigation behaviors in mechanistic movement models. Theor Ecol 4, 341–355 (2011). https://doi.org/10.1007/s12080-010-0081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-010-0081-1

Keywords

Navigation