Skip to main content
Log in

Prostaglandin E2 is crucial in the response of podocytes to fluid flow shear stress

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Podocytes play a key role in maintaining and modulating the filtration barrier of the glomerulus. Because of their location, podocytes are exposed to mechanical strain in the form of fluid flow shear stress (FFSS). Several human diseases are characterized by glomerular hyperfiltration, such as diabetes mellitus and hypertension. The response of podocytes to FFSS at physiological or pathological levels is not known. We exposed cultured podocytes to FFSS, and studied changes in actin cytoskeleton, prostaglandin E2 (PGE2) production and expression of cyclooxygenase-1 and–2 (COX-1, COX-2). FFSS caused a reduction in transversal F-actin stress filaments and the appearance of cortical actin network in the early recovery period. Cells exhibited a pattern similar to control state by 24 h following FFSS without significant loss of podocytes or apoptosis. FFSS caused increased levels of PGE2 as early as 30 min after onset of shear stress, levels that increased over time. PGE2 production by podocytes at post-2 h and post-24 h was also significantly increased compared to control cells (p < 0.039 and 0.012, respectively). Intracellular PGE2 synthesis and expression of COX-2 was increased at post-2 h following FFSS. The expression of COX-1 mRNA was unchanged. We conclude that podocytes are sensitive and responsive to FFSS, exhibiting morphological and physiological changes. We believe that PGE2 plays an important role in mechanoperception in podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajubi NE, Klein-Nulend J, Nijweide PJ et al (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton—dependent process. Biochem Biophy Res Comm 225:62–68

    Article  CAS  Google Scholar 

  • Ajubi NE, Lkein-Nulend J, Alblas MJ et al (1997) Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiology 276:E171–E178

    Google Scholar 

  • Arendshorst WJ, Navare LG. (1993) Renal circulation and glomerular hemodynamics. In: Schrier RW, Gottschalk CW (eds). Diseases of the kidney, 6th edn. Little Brown and Company, pp 59–106

  • Bakker AD, Klein-Nulend J, Tanck E et al (2005) Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int 16:983–989

    Article  CAS  PubMed  Google Scholar 

  • Bakker AD, Klein-Nulend J, Tanck E et al (2006) Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int 17:827–833

    Article  CAS  PubMed  Google Scholar 

  • Bek M, Nüsing R, Kowark P et al (1999) Characterization of prostanoid receptors in podocytes. J Am Soc Nephrol 10:2084–2093

    CAS  PubMed  Google Scholar 

  • Breyer MD, Breyer RM (2000) Prostaglandin receptors: their role in regulating renal function. Curr Opin Nephrol Hypertens 9:23–29

    Article  CAS  PubMed  Google Scholar 

  • Breyer MD, Jacobson HR, Breyer RM (1996) Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 7:8–17

    CAS  PubMed  Google Scholar 

  • Chatziantoniou C, Arendshorst WJ (1992) Prostaglandin interactions with angiotensin, norepinephrine, and thromboxane in rat renal vasculature. Am J Physiol 262(1 Pt 2):F68–F76

    CAS  PubMed  Google Scholar 

  • Cheng B, Kato Y, Zhao S et al (2001) PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142:3464–3473

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang S, Jo YI et al (2007) Overexpression of cyclooxygenase-2 predisposes to podocyte injury. J Am Soc Nephrol 18:551–559

    Article  CAS  PubMed  Google Scholar 

  • Cherian PP, Wang X, Gu S et al (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Molec Biol Cell 16:3100–3106

    Article  CAS  PubMed  Google Scholar 

  • Conte G, Cianciaruso B, De Nicola L et al (1992) Inhibition of urea tubular reabsorption by PGE1 infusion in man. Nephron 60:42–48

    Article  CAS  PubMed  Google Scholar 

  • Créminon C, Habib A, Maclouf J et al (1995) Differential measurement of constitutive (COX-1) and inducible (COX-2) cyclooxygenase expression in human umbilical vein endothelial cells using specific immunometric enzyme immunoassays. Biochim Biophys Acta 1254:341–348

    PubMed  Google Scholar 

  • Dandapani SV, Sugimoto H, Matthews BD et al (2007) (2007) Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem 282:467–477

    Article  CAS  PubMed  Google Scholar 

  • De Forrest JM, Davis JO, Freeman RH et al (1980) Effects of indomethacin and meclofenamate on renin release and renal hemodynamic function during chronic sodium depletion in conscious dogs. Circ Res 47:99–107

    PubMed  Google Scholar 

  • Durvasula RV, Petermann AT, Hiromura K et al (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65:30–39

    Article  CAS  PubMed  Google Scholar 

  • Edwards RM (1985) Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am J Physiol 248:F779–F784

    CAS  PubMed  Google Scholar 

  • Endlich N, Endlich K (2006) Stretch, tension and adhesion—adaptive mechanisms of the actin cytoskeleton in podocytes. Eur J Cell Biol 85:229–234

    Article  CAS  PubMed  Google Scholar 

  • Endlich N, Kress KR, Reiser J et al (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12:413–422

    CAS  PubMed  Google Scholar 

  • FitzGerald GA (2002) The choreography of cyclooxygenases in the kidney. J Clin Invest 110:33–34

    CAS  PubMed  Google Scholar 

  • Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 291:F856–F865

    Article  CAS  PubMed  Google Scholar 

  • Golbetz H, Black V, Shemesh O, Myers BD (1989) Mechanism of the antiproteinuric effect of indomethacin in nephrotic humans. Am J Physiol 256:F44–F51

    CAS  PubMed  Google Scholar 

  • Griffin KA, Bidani AK, Picken M et al (1992) Prostaglandins do not mediate impaired autoregulation or increased renin secretion in remnant rat kidneys. Am J Physiol 263:F1057–F1062

    CAS  PubMed  Google Scholar 

  • Huang C, Miller RT (2007) Shear force induces c-src phosphorylation and phospholipase D activation in differentiated podocytes. J Am Soc Nephrol 18:209A

    Article  Google Scholar 

  • Jee WSS, Ueno K, Deng YP, Woodbury DM (1985) The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and corticoendosteal bone formation. Calcif Tissue Int 37:148–157

    Article  CAS  PubMed  Google Scholar 

  • Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271:E205–E208

    CAS  PubMed  Google Scholar 

  • Jorgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP-and gap junction-dependent intracellular calcium signaling in osteoblastic cells. J Cell Biol 139:497–506

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen NR, Henriksen Z, Sorensen OH et al (2002) Intracellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 277:7574–7580

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen NR, Teilmann SC, Henriksen Z et al (2003) Activation of L-type calcium channels is required for gap junction-mediated intracellular calcium signaling in osteoblastic cells. J Biol Chem 278:4082–4086

    Article  CAS  PubMed  Google Scholar 

  • Klein-Nulend J, Semeins CM, Ajubi NE et al (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlations with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  CAS  PubMed  Google Scholar 

  • Klein-Nulend J, Burger EH, Semeins CM et al (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kömhoff M, Grone HJ, Klein T, Seyberth HW et al (1997) Localization of cyclooxygenase-1 and–2 in adult and fetal human kidney: implication for renal function. Am J Physiol 272(4 Pt 2):F460–F468

    PubMed  Google Scholar 

  • Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR (2004) p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol 286:F693–F701

    Article  CAS  PubMed  Google Scholar 

  • McAllister TN, Du T, Frangos JA (2000) Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem Biophys Res Commun 270:643–648

    Article  CAS  PubMed  Google Scholar 

  • McCarthy ET, Sharma M (2002) Indomethacin protects permeability barrier from focal segmental glomerulosclerosis serum. Kidney Int 61:534–541

    Article  CAS  PubMed  Google Scholar 

  • Mundel P, Heid HW, Mundel TM et al (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139:193–204

    Article  CAS  PubMed  Google Scholar 

  • Nakayama Y, Nonoguchi H, Inoue T et al (2007) Survival analysis of renal function on combination therapy with prostaglandin and angiotensin converting enzyme inhibitor (PAC) for chronic kidney disease. J Am Soc Nephrol 18:379A

    Article  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226

    CAS  PubMed  Google Scholar 

  • Nath KA, Chmielewski DH, Hostetter TH (1987) Regulatory role of prostanoids in glomerular microcirculation of remnant nephrons. Am J Physiol 252:F829–F837

    CAS  PubMed  Google Scholar 

  • Robinson JA, Chatterjee-Kishore M, Yaworsky PJ et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728

    Article  CAS  PubMed  Google Scholar 

  • Rodewald R, Karnovsky MJ (1974) Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 60:423–433

    Article  CAS  PubMed  Google Scholar 

  • Schlondorff D (1986) Renal prostaglandin synthesis. Sites of production and specific actions of prostaglandins. Am J Med 81:1–11

    Article  CAS  PubMed  Google Scholar 

  • Shankland SJ, Pippin JW, Reiser J, Mundel P (2007) Podocytes in culture: past, present, and future. Kidney Int 72:26–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, McCarthy ET, Sharma R et al (2006) Arachidonic acid metabolites mediate the radiation-induced increase in glomerular albumin permeability. Exp Biol Med 231:99–106

    CAS  Google Scholar 

  • Srivastava T, Cudmore PA, Sharma R et al. (2008) Fluid flow shear stress (FF) but not substrate stretch (SS) increases podocyte release of prostaglandin E2 (PGE2). EPAS2008:3803.1.

  • Stahl RA, Kudelka S, Paravicini M, Schollmeyer P (1986) Prostaglandin and thromboxane formation in glomeruli from rats with reduced renal mass. Nephron 42:252–257

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto Y, Namba T, Shigemoto R et al (1994) Distinct cellular localization of mRNAs for three subtypes of prostaglandin E receptor in kidney. Am J Physiol 266:F823–F828

    CAS  PubMed  Google Scholar 

  • Velosa JA, Torres VE, Donadio JV Jr et al (1985) Treatment of severe nephrotic syndrome with meclofenamate: an uncontrolled pilot study. Mayo Clin Proc 60:586–592

    CAS  PubMed  Google Scholar 

  • Vriesendorp R, Donker AJ, de Zeeuw D et al (1985) Antiproteinuric effect of naproxen and indomethacin. A double-blind crossover study. Am J Nephrol 5:236–242

    Article  CAS  PubMed  Google Scholar 

  • Vriesendorp R, Donker AJ, de Zeeuw D et al (1986) Effects of nonsteroidal anti-inflammatory drugs on proteinuria. Am J Med 81:84–94

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa S, Godwin SL, Peterson DR et al (2002) Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal regulated kinase signaling pathway. J Bone Miner Res 17:266–274

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Cheng HF, Zhang MZ et al (1998) Selective increase of cyclooxygenase-2 expression in a model of renal ablation. Am J Physiol 275:F613–F622

    CAS  PubMed  Google Scholar 

  • Wang JL, Cheng HF, Shappell S, Harris RC (2000) A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats. Kidney Int 57:2334–2342

    Article  CAS  PubMed  Google Scholar 

  • You J, Reilly GC, Zhen X et al (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371

    Article  CAS  PubMed  Google Scholar 

  • You J, Jacobs CR, Steinberg TH, Donahue HJ (2002) P2Y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J Biol Chem 277:48724–48729

    Article  CAS  PubMed  Google Scholar 

  • Zaman G, Pitsillides AA, Rawlinson SC et al (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Barragan-Adjemian C, Ye L et al (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539–4552

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by The Sam and Helen Kaplan Research Fund in Pediatric Nephrology, Marion Merrell Dow Foundation Clinical Scholar Award and The Norman S. Coplon Extramural Research Grant to TS and AR046798 to MLJ and LFB. We are indebted to Ashley Sherman, MA for statistical assistance.

Disclosure

None of the authors of this work have financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, T., McCarthy, E.T., Sharma, R. et al. Prostaglandin E2 is crucial in the response of podocytes to fluid flow shear stress. J. Cell Commun. Signal. 4, 79–90 (2010). https://doi.org/10.1007/s12079-010-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-010-0088-9

Keywords

Navigation