Skip to main content

Advertisement

Log in

Role of amylase, mucin, IgA and albumin on salivary protein buffering capacity: A pilot study

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

It has been suggested that proteins serve as major salivary buffers below pH 5. It remains unclear, however, which salivary proteins are responsible for these buffering properties. The aim of this pilot study was to evaluate the correlation between salivary concentration of total protein, amylase, mucin, immunoglobulin A (IgA), albumin and total salivary protein buffering capacity at a pH range of 4–5. In addition, the buffering capacity and the number of carboxylic acid moieties of single proteins were assessed.

Stimulated saliva samples were collected at 9:00, 13:00 and 17:00 from 4 healthy volunteers on 3 successive days. The buffering capacities were measured for total salivary protein or for specific proteins. Also, the concentration of total protein, amylase, mucin, IgA and albumin were analysed.

Within the limits of the current study, it was found that salivary protein buffering capacity was highly positively correlated with total protein, amylase and IgA concentrations. A weak correlation was observed for both albumin and mucin individually. Furthermore, the results suggest that amylase contributed to 35% of the salivary protein buffering capacity in the pH range of 4–5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Attin T, Meyer K, Hellwig E, Buchalla W and Lennon AM 2003 Effect of mineral supplements to citric acid on enamel erosion. Arch. Oral. Biol. 48 753–759

    Article  PubMed  CAS  Google Scholar 

  • Aufricht C, Tenner W, Salzer HR, Khoss AE, Wurst E and Herkner K 1992 Salivary IgA concentration is influenced by the saliva collection method. Eur. J. Clin. Chem. Clin. Biochem. 30 81–83

    PubMed  CAS  Google Scholar 

  • Bardow A, Moe D, Nyvad B and Nauntofte B 2000 The buffer capacity and buffer systems of human whole saliva measured without loss of CO2. Arch. Oral. Biol. 45 1–12

    Article  PubMed  CAS  Google Scholar 

  • Becerra L, Soares RV, Bruno LS, Siqueira CC, Oppenheim FG, Offner GD and Troxler RF 2003 Patterns of secretion of mucins and non-mucin glycoproteins in human submandibular/sublingual secretion. Arch. Oral. Biol. 48 147–154

    Article  PubMed  CAS  Google Scholar 

  • Bernfeld P 1951 Enzymes of starch degradation and synthesis. Adv. Enzymol. Relat. Subj. Biochem. 12 379–428

    PubMed  CAS  Google Scholar 

  • Bidlingmeyer BA, Cohen SA and Tarvin TL 1984 Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. B 336 93–104

    Article  CAS  Google Scholar 

  • Bishop D, Edge J, Mendez-Villanueva A, Thomas C and Schneiker K 2009 High-intensity exercise decreases muscle buffer capacity via a decrease in protein buffering in human skeletal muscle. Pflug. Archiv. Eur. J. Phy. 458 929–936

    Article  CAS  Google Scholar 

  • Birkhed D and Heintze U 1989 Salivary secretion rate, buffer capacity, and pH; in Human saliva: clinical chemistry and microbiology (ed) JO Tenovuo (Fluoride: CRC Press) pp 25–73

    Google Scholar 

  • Carney LG, Mauger TF and Hill RM 1989 Buffering in human tears: pH responses to acid and base challenge. Invest. Ophthalmol. Vis. Sci. 30 747–754

    PubMed  CAS  Google Scholar 

  • Chang J-Y and Knecht R 1991 Direct analysis of the disulfide content of proteins: Methods for monitoring the stability and refolding process of cystine-containing proteins. Anal. Biochem. 197 52–58

    Article  PubMed  CAS  Google Scholar 

  • Dawes C 1984 Stimulus effects on protein and electrolyte concentrations in parotid saliva. J. Physiol. 346 579–588

    PubMed  CAS  Google Scholar 

  • Dawes C 2003 What is the critical pH and why does a tooth dissolve in acid? J. Can. Dent. Assoc. 69 722–724

    PubMed  Google Scholar 

  • Eiffert H, Quentin E, Decker J, Hillemeir S, Hufschmidt M, Kungmüller D, Weber MH and Hilschmann N 1984 Die Primärstruktur der menschlichen freien Sekretkomponente und die Anordnung der Disulfidbrücken. Hoppe-Seyler's Physiol. Chem. Bd. 365 1489–1495

    Article  CAS  Google Scholar 

  • Ericsson Y 1959 Clinical investigations of the salivary buffering action. Acta. Odontol. Scand. 17 131–165

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD and Bairoch A 2005 Identification and Analysis Tools on the ExPASy Server; in The proteomics protocols handbook (ed) JMT Walker (New Jersey: Humana Press) pp 571–607

    Chapter  Google Scholar 

  • Harmsen BJM, De Bruin SH, Janssen LHM, Rodrigues de Miranda JF and Van Os GAJ 1971 pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH. Biochemistry 10 3217–3221

    Article  PubMed  CAS  Google Scholar 

  • Henskens YMC, van den Keijbus PAM, Veerman ECI, Van der Weijden GA, Timmerman MF, Snoek CM, Van der Velden U and Nieuw Amerongen AV 1996 Protein composition of whole and parotid saliva in healthy and periodontitis subjects. Determination of cystatins, albumin, amylase and IgA. J. Periodontal. Res. 31 57–65

    Article  PubMed  CAS  Google Scholar 

  • Holbrook WP, Furuholm J, Gudmundsson K, Theodórs A and Meurman JH 2009 Gastric reflux is a significant causative factor of tooth erosion. J. Dent. Res. 88 442–426

    Google Scholar 

  • Infante AJ and Putnam FW 1979 Primary structure of a human IgA1immunoglobulin. J. Biol. Chem. 254 9006–9016

    PubMed  CAS  Google Scholar 

  • Jenzano JW, Hogan SL, Noyes CM, Featherstone GL and Lundblad RL 1986 Comparison of five techniques for the determination of protein content in mixed human saliva. Anal. Biochem. 159 370–376

    Article  PubMed  CAS  Google Scholar 

  • Mestecky J 1993 Saliva as a manifestation of the common mucosal immune system. Ann. NY Acad. Sci. 694 184–194

    Article  PubMed  CAS  Google Scholar 

  • Kivelä J, Parkkila S, Parkkila A-K, Leinonen J and Rajaniemi H 1999 Salivary carbonic anhydrase isoenzyme VI. J. Physiol. 520 315–320

    Article  PubMed  Google Scholar 

  • Lamanda A, Cheaib Z, Turgut MD and Lussi A 2007 Protein buffering in model systems and in whole human saliva. PLoS ONE 2 e263

    Article  PubMed  Google Scholar 

  • Lilienthal B 1955 An analysis of the buffer systems in saliva. J Dent Res 34 516–530

    Article  PubMed  CAS  Google Scholar 

  • Lussi A and Schaffner M 2000 Progression of and risk factors for dental erosion and wedge-shaped defects over a 6-year period. Caries Res. 34 182–187

    Article  PubMed  CAS  Google Scholar 

  • Lussi A and Jaeggi T 2006 Chemical factors; in Dental erosion from diagnosis to therapy (ed) A Lussi (Basel: Karger) pp 77–87

    Chapter  Google Scholar 

  • Lussi A and Jaeggi T 2008 Erosion—diagnosis and risk factors. Clin. Oral. Inv. 12 5–13

    Article  Google Scholar 

  • Mantle M and Allen A 1978 A colorimetric assay for glycoproteins based on the periodic acid/Schiff stain. Biochem. Soc. Trans. 6 607–609

    PubMed  CAS  Google Scholar 

  • Meyer-Lueckel H, Hopfenmuller W, von Klinggraff D and Kielbassa AM 2006 Microradiographic study on the effects of mucin-based solutions used as saliva substitutes on demineralised bovine enamel in vitro. Arch. Oral. Biol. 51 541–547

    Article  PubMed  CAS  Google Scholar 

  • Niswander JD, Shreffler DC and Neel JV 1963 Genetic studies of quantitative variation in a component of human saliva. Ann. Hum. Genet. 27 319–328

    Article  Google Scholar 

  • Rayment SA, Liu B, Offner GD, Oppenheim FG and Troxler RF 2000 Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J. Dent. Res. 79 1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Selby C, Lobb PA and Jeffcoate WJ 1988 Sex hormone binding globulin in saliva. Clin. Endocrinol. 28 19–24

    Article  CAS  Google Scholar 

  • Sherwood L 2006 Fundamentals of physiology (Belmont: Thomson Brooks/cole)

    Google Scholar 

  • Surdacka A, Strzyka K and Rydzewska A 2007 Changeability of oral cavity environment. Eur. J. Dent. 1 14–17

    PubMed  Google Scholar 

  • Valdimarsdottir HB and Stone AA 1997 Psychosocial factors and secretory immunoglobulin A. Crit. Rev. Oral. Biol. Med. 8 461–474

    Article  PubMed  CAS  Google Scholar 

  • Van Slyke D 1922 On the measurement of buffer values and the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 52 525–570

    Google Scholar 

  • Zakowski JJ, Gregory MR and Bruns DE 1984 Amylase from human serous ovarian tumors: purification and characterization. Clin. Chem. 30 62–68

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the University Of Bern, Switzerland. We would like to thank Dr Stefanie Hayoz, Institute of Mathematical Statistics, University of Bern, for the statistical analysis and Dr Ekaterina Rakhmatullina, Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, for help with revisions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Cheaib.

Additional information

Corresponding editor: MARÍA ELIANO LANIO

MS received 02 August 2012; accepted 12 February 2013

Corresponding editor: María Eliano Lanio

[Cheaib Z and Lussi A 2013 Role of amylase, mucin, IgA and albumin on salivary protein buffering capacity: A pilot study. J. Biosci. 38 1–7] DOI 10.1007/s12038-013-9311-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheaib, Z., Lussi, A. Role of amylase, mucin, IgA and albumin on salivary protein buffering capacity: A pilot study. J Biosci 38, 259–265 (2013). https://doi.org/10.1007/s12038-013-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9311-1

Keywords

Navigation