Skip to main content
Log in

Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Queuosine (Q), a hypermodified nucleoside, occurs at the wobble position of transfer RNAs (tRNAs) with GUN anticodons. In eubacteria, absence of Q affects messenger RNA (mRNA) translation and reduces the virulence of certain pathogenic strains. In animal cells, changes in the abundance of Q have been shown to correlate with diverse phenomena including stress tolerance, cell proliferation and tumour growth but the function of Q in animals is poorly understood. Animals are thought to obtain Q (or its analogues) as a micronutrient from dietary sources such as gut microflora. However, the difficulty of maintaining animals under bacteria-free conditions on Q-deficient diets has severely hampered the study of Q metabolism and function in animals. In this study, we show that as in higher animals, tRNAs in the nematode Caenorhabditis elegans are modified by Q and its sugar derivatives. When the worms were fed on Q-deficient Escherichia coli, Q modification was absent from the worm tRNAs suggesting that C. elegans lacks a de novo pathway of Q biosynthesis. The inherent advantages of C. elegans as a model organism, and the simplicity of conferring a Q-deficient phenotype on it make it an ideal system to investigate the function of Q modification in tRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine monophosphate

mRNA:

messenger RNA

Q:

queuosine

Tgt:

tRNA guanine transglycosylase

oQ:

epoxy-Q

tRNA:

transfer RNA

References

  • Baranowski W, Dirheimer G, Jakowicki J A and Keith G 1994 Deficiency of queuine, highly modified purine base, in transfer RNAs from primary and metastatic ovarian malignant tumors in women; Cancer Res. 54 4468–4471

    PubMed  CAS  Google Scholar 

  • Brenner S 1974 The genetics of Caenorhabditis elegans; Genetics 77 71–94

    PubMed  CAS  Google Scholar 

  • Dineshkumar T K, Thanedar S, Subbulakshmi C, Varshney U 2002 An unexpected absence of queuosine modification in the tRNAs of an Escherichia coli B strain; Microbiology 148 3779–3787

    PubMed  CAS  Google Scholar 

  • Durand J M, Dagberg B, Uhlin B E, Björk G R 2000 Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene; Mol. Microbiol. 35 924–935

    Article  PubMed  CAS  Google Scholar 

  • Emmerich B, Zubrod E, Weber H, Maubach P A, Kersten H and Kersten W 1985 Relationship of queuine-lacking transfer RNA to the grade of malignancy in human leukemias and lymphomas; Cancer Res. 45 4308–4314

    PubMed  CAS  Google Scholar 

  • Frey B, McCloskey J, Kersten W and Kersten H 1988 New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium; J. Bacteriol. 170 2078–2082

    PubMed  CAS  Google Scholar 

  • Gaur R and Varshney U 2005 Genetic analysis identifies a function for the queC (ybaX) gene product at an initial step in the queuosine biosynthetic pathway in Escherichia coli; J. Bacteriol. 187 6893–6901

    Article  PubMed  CAS  Google Scholar 

  • Gehrke C W and Kuo K C 1990 Ribonucleoside analysis by reversed-phase high performance liquid chromatography; in Chromatography and modification of nucleosides. Part A. Analytical methods for major and modified nucleosides (eds) C W Gehrke et al (Amsterdam: Elsevier) 45A pp A3–A71

    Google Scholar 

  • Gregson J M, Crain P F, Edmonds C G, Gupta R, Hashizume T, Phillipson D W and McCloskey J A 1993 Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro-4-oxo-7-beta-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximidamide (archaeosine)); J. Biol. Chem. 268 10076–10086

    PubMed  CAS  Google Scholar 

  • Gunduz U and Katze J R 1984 Queuine salvage in mammalian cells. Evidence that queuine is generated from queuosine 5′-phosphate; J. Biol. Chem. 259 1110–1113

    PubMed  CAS  Google Scholar 

  • Harada F and Nishimura S 1972 Possible anticodon sequences of tRNAHis, tRNAAsn, and tRNAAsp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticondons of these transfer ribonucleic acids; Biochemistry 11 301–308

    Article  PubMed  CAS  Google Scholar 

  • Haumont E, Nicoghosian K, Grosjean H and Cedergren RJ 1984 The nucleotide sequence of mannosyl-Q-containing tRNAAsp from Xenopus laevis oocytes; Biochimie 66 579–582

    Article  PubMed  CAS  Google Scholar 

  • Haumont E, Droogmans L and Grosjean H 1987 Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence; Eur. J. Biochem. 168 219–225

    Article  PubMed  CAS  Google Scholar 

  • Iwata-Reuyl D 2003 Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA; Bioorg. Chem. 31 24–43

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Kuchino Y, Nihei K and Nishimura S 1975 Distribution of the modified nucleoside Q and its derivatives in animal and plant transfer RNAs; Nucleic Acids Res. 2 1931–1939

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Nakanishi K, Macfarlane R D, Torgerson D F, Ohashi Z, McCloskey J A, Gross H J and Nishimura S 1976 Letter: The structure of Q* nucleoside isolated from rabbit liver transfer ribonucleic acid; J. Am. Chem. Soc. 98 5044–5046

    Article  PubMed  CAS  Google Scholar 

  • Katze J R, Basile B, McCloskey J A 1982 Queuine, a modified base incorporated posttranscriptionally into eukaryotic transfer RNA: wide distribution in nature; Science 216 55–56

    Article  PubMed  CAS  Google Scholar 

  • Katze J R and Beck W T 1980 Administration of queuine to mice relieves modified nucleoside queuosine deficiency in Ehrlich ascites tumor tRNA; Biochem. Biophys. Res. Commun. 96 313–319

    Article  PubMed  CAS  Google Scholar 

  • Kersten H 1984 On the biological significance of modified nucleosides in tRNA. Prog. Nucleic Acid Res. Mol. Biol. 31 59–114

    PubMed  CAS  Google Scholar 

  • Kirtland G M, Morris T D, Moore P H, O’Brian J J, Edmonds C G, McCloskey J A and Katze J R 1988 Novel salvage of queuine from queuosine and absence of queuine synthesis in Chlorella pyrenoidosa and Chlamydomonas reinhardtii; J. Bacteriol. 170 5633–5641

    PubMed  CAS  Google Scholar 

  • Kuchino Y, Shindo-Okada N, Ando N, Watanabe S and Nishimura S 1981 Nucleotide sequences of two aspartic acid tRNAs from rat liver and rat ascites hepatoma; J. Biol. Chem. 256 9059–9062

    PubMed  CAS  Google Scholar 

  • Langgut W and Kersten H 1990 The deazaguanine-derivative, queuine, affects cell proliferation, protein phosphorylation and the expression of the proto oncogenes c-fos and c-myc in HeLa cells; FEBS Lett. 265 33–36

    Article  PubMed  CAS  Google Scholar 

  • Langgut W, Reisser T, Nishimura S and Kersten H 1993 Modulation of mammalian cell proliferation by a modified tRNA base of bacterial origin; FEBS Lett. 336 137–142

    Article  PubMed  CAS  Google Scholar 

  • Morgan C J, Merrill F L and Trewyn R W 1996 Defective transfer RNA-queuine modification in C3H10T1/2 murine fibroblasts transfected with oncogenic ras; Cancer Res. 56 594–598

    PubMed  CAS  Google Scholar 

  • Noguchi S, Nishimura Y, Hirota Y and Nishimura S 1982 Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA; J. Biol. Chem. 257 6544–6550

    PubMed  CAS  Google Scholar 

  • Okada N and Nishimura S 1977 Enzymatic synthesis of Q nucleoside containing mannose in the anticodon of tRNA: isolation of a novel mannosyltransferase from a cell-free extract of rat liver; Nucleic Acids Res. 4 2931–2938

    Article  PubMed  CAS  Google Scholar 

  • Okada N, Noguchi S, Kasai H, Shindo-Okada N, Ohgi T, Goto T and Nishimura S 1979 Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction; J. Biol. Chem. 254 3067–3073

    PubMed  CAS  Google Scholar 

  • Pathak C and Vinayak M 2005 Modulation of lactate dehydrogenase isozymes by modified base queuine; Mol. Biol. Rep. 32 191–196

    Article  PubMed  CAS  Google Scholar 

  • Pawelkiewicz J, Sroga G E, Starzynska E and Zawielak J 1986 Formation of queuine containing tRNATyr in higher plants; Plant Sci. 47 83–89

    Article  CAS  Google Scholar 

  • Pomerantz S C and McCloskey J A 1990 Analysis of tRNA hydrolysates by liquid chromatography-mass spectrometry; Methods Enzymol. 193 796–824

    Article  PubMed  CAS  Google Scholar 

  • Randerath E, Agrawal H P and Randerath K 1984 Specific lack of the hypermodified nucleoside, queuosine, in hepatoma mitochondrial aspartate transfer RNA and its possible biological significance; Cancer Res. 44 1167–1171

    PubMed  CAS  Google Scholar 

  • Reader J S, Metzgar D, Schimmel P and de Crecy-Lagard V 2004 Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine; J. Biol. Chem. 279 6280–6285

    Article  PubMed  CAS  Google Scholar 

  • Reisser T, Langgut W and Kersten H 1994 The nutrient factor queuine protects HeLa cells from hypoxic stress and improves metabolic adaptation to oxygen availability; Eur. J. Biochem 221 979–986

    Article  PubMed  CAS  Google Scholar 

  • Reyniers J P, Pleasants J R, Wostmann B S, Katze J R and Farkas W R 1981 Administration of exogenous queuine is essential for the biosynthesis of the queuosine-containing transfer RNAs in the mouse; J. Biol. Chem. 256 11591–11594

    PubMed  CAS  Google Scholar 

  • Romier C, Meyer J E and Suck D 1997 Slight sequence variations of a common fold explain the substrate specificities of tRNA-guanine transglycosylases from the three kingdoms; FEBS Lett. 416 93–98

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning: A laboratory manual (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Schachner E and Kersten H 1984 Queuosine deficiency and restoration in Dictyostelium discoideum and related early developmental changes; J. Gen. Microbiol. 130 135–144

    CAS  Google Scholar 

  • Schon A, Gough S and Soll D 1992 Chloroplast tRNA(Asp): nucleotide sequence and variation of in vivo levels during plastid maturation; Plant Mol. Biol. 20 601–607

    Article  PubMed  CAS  Google Scholar 

  • Siard T J, Jacobson K B and Farkas W R 1991 Queuine metabolism and cadmium toxicity in Drosophila melanogaster; BioFactors (Oxford, England) 3 41–47

    CAS  Google Scholar 

  • Stengl B, Reuter K and Klebe G 2005 Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism; Chembiochem 6 1926–1939

    Article  PubMed  CAS  Google Scholar 

  • Sulston J E, Schierenberg E, White J G and Thomson J N 1983 The embryonic cell lineage of the nematode Caenorhabditis elegans; Dev. Biol. 100 64–119

    Article  PubMed  CAS  Google Scholar 

  • Van Lanen S G, Reader J S, Swairjo M A, de Crecy-Lagard V, Lee B and Iwata-Reuyl D 2005 From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold; Proc. Natl. Acad. Sci. USA 102 4264–4269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Tuck or Umesh Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, R., Björk, G.R., Tuck, S. et al. Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block. J Biosci 32, 747–754 (2007). https://doi.org/10.1007/s12038-007-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0074-4

Keywords

Navigation