Skip to main content

Advertisement

Log in

Agrochemicals, α-Synuclein, and Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epidemiological, population-based case–control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson’s disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AD:

Alzheimer’s disease

ATP:

Adenosinetriphosphate

ATR–FTIR:

Attenuated total reflectance Fourier transform infrared

BBB:

Blood–brain barrier

BHC:

Benzene hexachloride

CD:

Circular dichroism

CK:

Casein kinase

CNS:

Central nervous system

DDC:

Diethyldithiocarbamate

DDE:

Dichlorodiphenyldichloroethylene (1,1-bis-(4-chlorophenyl)-2,2-dichloroethene)

DDT:

Dichloro diphenyl trichloroethane

DLB:

Dementia with Lewy bodies

EDCs:

Endocrine disrupting chemicals

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

HCH:

Hexachloro-cyclohexane

MAO-B:

Monoamine oxidase B

Mn-EBDC:

Manganese ethylene-bis-dithiocarbamate

MPP+ :

1-Methyl-4-phenylpyridinium ion

MPTP:

1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine

NAC:

Non-amyloid component

6-OHDA:

6-Hydroxydopamine

PANN:

Pesticide Action Network of North America

PD:

Parkinson’s disease

PLD2 :

Phospholipase D2

PQ•+ :

Paraquat monocation free radical

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

TMAO:

Trimethylamine oxide

UCH-L1:

Ubiquitin C-terminal hydrolase isozyme l1

References

  1. American Chemical Society, Committee on Chemistry and Public Affairs, Subcommittee on Environmental Improvement (1969) Cleaning our environment, the chemical basis for action; a report. American Chemical Society, Washington

    Google Scholar 

  2. Gomez C, Bandez MJ, Navarro A (2007) Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome. Front Biosci 12:1079–1093

    Article  PubMed  CAS  Google Scholar 

  3. McEwen F (1978) Food production: the challenge for pesticides. Bioscience 28(12):773–777

    Article  Google Scholar 

  4. Marrs TC (1993) Insecticides in urban environment. Proceedings of the First International Conference on Urban Pests 9–13

  5. Chester G, Ward RJ (1984) Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol 13:551–563

    Article  PubMed  CAS  Google Scholar 

  6. Bouvier G, Blanchard O, Momas I, Seta N (2006) Pesticide exposure of non-occupationally exposed subjects compared to some occupational exposure: a French pilot study. Sci Total Environ 366(1):74–91

    Article  PubMed  CAS  Google Scholar 

  7. Ritz B, Yu F (2000) Parkinson’s disease mortality and pesticide exposure in California 1984–1994. Int J Epidemiol 29(2):323–329

    Article  PubMed  CAS  Google Scholar 

  8. Rull RP, Ritz B, Shaw GM (2006) Neural tube defects and maternal residential proximity to agricultural pesticide applications. Am J Epidemiol 163(8):743–753

    Article  PubMed  Google Scholar 

  9. Cannon SB, Veazey JM Jr, Jackson RS, Burse VW, Hayes C, Straub WE, Landrigan PJ, Liddle JA (1978) Epidemic kepone poisoning in chemical workers. Am J Epidemiol 107(6):529–537

    PubMed  CAS  Google Scholar 

  10. Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281(4):341–346

    Article  PubMed  CAS  Google Scholar 

  11. Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113(9):1250–1256

    Article  PubMed  CAS  Google Scholar 

  12. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342

    Article  PubMed  CAS  Google Scholar 

  13. Lee S-A, Dai Q, Zheng W, Gao Y-T, Blair A, Tessari JD, Tian Ji B, Shu X-O (2010) Association of serum concentration of organochlorine pesticides with dietary intake and other lifestyle factors among urban Chinese women. Environ Int 33(2):157–163

    Article  CAS  Google Scholar 

  14. Lintelmann J, Katayama A, Kurihara N, Shore L, Wenzel A (2003) Endocrine disruptors in the environment. Pure Appl Chem 75(5):631–681

    Article  CAS  Google Scholar 

  15. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  PubMed  CAS  Google Scholar 

  16. Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309(5):310

    PubMed  CAS  Google Scholar 

  17. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605

    Article  PubMed  CAS  Google Scholar 

  18. Murphy RM, Tsai AM (2006) Misbehaving proteins: protein (mis)folding, aggregation, and stability. Springer, New York

    Book  Google Scholar 

  19. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603

    Article  PubMed  CAS  Google Scholar 

  20. Beyer K (2006) Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 112(3):237–251

    Article  PubMed  CAS  Google Scholar 

  21. Li S, Crooks PA, Wei X, de Leon J (2004) Toxicity of dipyridyl compounds and related compounds. Crit Rev Toxicol 34(5):447–460

    Article  PubMed  CAS  Google Scholar 

  22. Louis ED, Factor-Litvak P, Parides M, Andrews L, Santella RM, Wolff MS (2006) Organochlorine pesticide exposure in essential tremor: a case–control study using biological and occupational exposure assessments. Neurotoxicology 27(4):579–586

    Article  PubMed  CAS  Google Scholar 

  23. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

    PubMed  CAS  Google Scholar 

  24. Jenner P (1992) What process causes nigral cell death in Parkinson’s disease? Neurol Clin 10(2):387–403

    PubMed  CAS  Google Scholar 

  25. Jenner P (1994) Oxidative damage in neurodegenerative disease. Lancet 344(8925):796–798

    Article  PubMed  CAS  Google Scholar 

  26. Uversky VN, Li J, Bower K, Fink AL (2002) Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease. Neurotoxicology 23(4–5):527–536

    Article  PubMed  CAS  Google Scholar 

  27. Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318(1):225–241

    Article  PubMed  CAS  Google Scholar 

  28. Coppede F, Mancuso M, Siciliano G, Migliore L, Murri L (2006) Genes and the environment in neurodegeneration. Biosci Rep 26(5):341–367

    Article  PubMed  CAS  Google Scholar 

  29. Uversky VN, Fink AL (2002) Biophysical properties of human alpha-synuclein and its role in Parkinson’s disease. In: Pandalai SG (ed) Recent research developments in proteins. Transworld Research Network, Kerala, pp 153–186

    Google Scholar 

  30. Tanner CM, Goldman SM (1996) Epidemiology of Parkinson’s disease. Neurol Clin 14(2):317–335

    Article  PubMed  CAS  Google Scholar 

  31. Tanner CM, Chen B, Wang W, Peng M, Liu Z, Liang X, Kao LC, Gilley DW, Goetz CG, Schoenberg BS (1989) Environmental factors and Parkinson’s disease: a case–control study in China. Neurology 39(5):660–664

    Article  PubMed  CAS  Google Scholar 

  32. Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12(2):49–54

    Article  PubMed  CAS  Google Scholar 

  33. Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D (2005) Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113(9):1230–1233

    Article  PubMed  CAS  Google Scholar 

  34. Doherty JD (2006) Screening pesticides for neuropathogenicity. J Biomed Biotechnol 2006(3):70414

    PubMed  Google Scholar 

  35. Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK (2005) Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect 113(9):1263–1270

    Article  PubMed  CAS  Google Scholar 

  36. Dick FD (2006) Parkinson’s disease and pesticide exposures. Br Med Bull 79–80:219–231

    Article  PubMed  CAS  Google Scholar 

  37. Dick S, Semple S, Dick F, Seaton A (2007) Occupational titles as risk factors for Parkinson’s disease. Occup Med (Lond) 57(1):50–56

    Article  Google Scholar 

  38. Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A (2007) Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 64(10):666–672

    Article  PubMed  CAS  Google Scholar 

  39. Dick FD, De Palma G, Ahmadi A, Osborne A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A (2007) Gene–environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med 64(10):673–680

    Article  PubMed  CAS  Google Scholar 

  40. Corrigan FM, French M, Murray L (1996) Organochlorine compounds in human brain. Hum Exp Toxicol 15(3):262–264

    Article  PubMed  CAS  Google Scholar 

  41. Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D (2000) Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 59(4):229–234

    Article  PubMed  CAS  Google Scholar 

  42. Rao JN, Dua V, Ulmer TS (2008) Characterization of alpha-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry 47(16):4651–4656

    Article  PubMed  CAS  Google Scholar 

  43. Kuhn K, Wellen J, Link N, Maskri L, Lubbert H, Stichel CC (2003) The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci 17(1):1–12

    Article  PubMed  Google Scholar 

  44. Uversky VN, Li J, Fink AL (2001) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500(3):105–108

    Article  PubMed  CAS  Google Scholar 

  45. Andre C, Truong TT, Robert JF, Guillaume YC (2005) Effect of metals on herbicides–alpha-synuclein association: a possible factor in neurodegenerative disease studied by capillary electrophoresis. Electrophoresis 26(17):3256–3264

    Article  PubMed  CAS  Google Scholar 

  46. Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR (1994) Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 36(1):100–103

    Article  PubMed  CAS  Google Scholar 

  47. Ishido M, Yonemoto J, Morita M (2007) Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett 173(1):66–72

    Article  PubMed  CAS  Google Scholar 

  48. Panzica GC, Melcangi RC (2008) The endocrine nervous system: source and target for neuroactive steroids. Brain Res Rev 57(2):271–276

    Article  PubMed  CAS  Google Scholar 

  49. Frigerio R, Sanft KR, Grossardt BR, Peterson BJ, Elbaz A, Bower JH, Ahlskog JE, de Andrade M, Maraganore DM, Rocca WA (2006) Chemical exposures and Parkinson’s disease: a population-based case–control study. Mov Disord 21(10):1688–1692

    Article  PubMed  Google Scholar 

  50. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  51. Di Monte DA (2001) The role of environmental agents in Parkinson’s disease. Clin Neurosci Res 1:419–426

    Article  Google Scholar 

  52. Di Monte DA (2003) The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2(9):531–538

    Article  PubMed  Google Scholar 

  53. Di Monte DA, Lavasani M, Manning-Bog AB (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23(4-5):487–502

    Article  PubMed  Google Scholar 

  54. Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74(2):721–729

    Article  PubMed  CAS  Google Scholar 

  55. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50(5):1346–1350

    Article  PubMed  CAS  Google Scholar 

  56. Fall PA, Fredrikson M, Axelson O, Granerus AK (1999) Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case–control study in Southeastern Sweden. Mov Disord 14(1):28–37

    Article  PubMed  CAS  Google Scholar 

  57. Semchuk KM, Love EJ, Lee RG (1993) Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 43(6):1173–1180

    Article  PubMed  CAS  Google Scholar 

  58. Semchuk KM, Love EJ, Lee RG (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42(7):1328–1335

    Article  PubMed  CAS  Google Scholar 

  59. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 48(6):1583–1588

    Article  PubMed  CAS  Google Scholar 

  60. Vanacore N, Nappo A, Gentile M, Brustolin A, Palange S, Liberati A, Di Rezze S, Caldora G, Gasparini M, Benedetti F, Bonifati V, Forastiere F, Quercia A, Meco G (2002) Evaluation of risk of Parkinson’s disease in a cohort of licensed pesticide users. Neurol Sci 23(Suppl 2):S119–S120

    Article  PubMed  Google Scholar 

  61. Hertzman C, Wiens M, Snow B, Kelly S, Calne D (1994) A case–control study of Parkinson’s disease in a horticultural region of British Columbia. Mov Disord 9(1):69–75

    Article  PubMed  CAS  Google Scholar 

  62. Di Monte D, Sandy MS, Ekstrom G, Smith MT (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem Biophys Res Commun 137(1):303–309

    Article  PubMed  Google Scholar 

  63. Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case–control study of occupational and environmental risk factors. Am J Ind Med 17(3):349–355

    Article  PubMed  CAS  Google Scholar 

  64. Dinis-Oliveira RJ, Remiao F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27(6):1110–1122

    Article  PubMed  CAS  Google Scholar 

  65. McCormack AL, Di Monte DA (2003) Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 85(1):82–86

    Article  PubMed  CAS  Google Scholar 

  66. Fernagut PO, Hutson CB, Fleming SM, Tetreaut NA, Salcedo J, Masliah E, Chesselet MF (2007) Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 61(12):991–1001

    Article  PubMed  CAS  Google Scholar 

  67. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644

    Article  PubMed  CAS  Google Scholar 

  68. Peng J, Oo ML, Andersen JK (2010) Synergistic effects of environmental risk factors and gene mutations in Parkinson’s disease accelerate age-related neurodegeneration. J Neurochem 115(6):1363–1373

    Article  PubMed  CAS  Google Scholar 

  69. Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23(8):3095–3099

    PubMed  CAS  Google Scholar 

  70. Orth M, Tabrizi SJ, Tomlinson C, Messmer K, Korlipara LV, Schapira AH, Cooper JM (2004) G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage. Neurochem Int 45(5):669–676

    Article  PubMed  CAS  Google Scholar 

  71. Yang W, Tiffany-Castiglioni E (2007) The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells. J Toxicol Environ Health A 70(21):1849–1857

    Article  PubMed  CAS  Google Scholar 

  72. Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson's disease accelerate age-related neurodegeneration. J Neurosci 27(26):6914–6922

    Article  PubMed  CAS  Google Scholar 

  73. Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75(6):2611–2621

    Article  PubMed  CAS  Google Scholar 

  74. Schuler F, Casida JE (2001) The insecticide target in the PSST subunit of complex I. Pest Manag Sci 57(10):932–940

    Article  PubMed  CAS  Google Scholar 

  75. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  PubMed  CAS  Google Scholar 

  76. Robinson BH (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta 1364(2):271–286

    Article  PubMed  CAS  Google Scholar 

  77. Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52(3–5):135–141

    Article  PubMed  CAS  Google Scholar 

  78. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  PubMed  CAS  Google Scholar 

  79. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179(1):9–16

    Article  PubMed  CAS  Google Scholar 

  80. Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84(3):491–502

    Article  PubMed  CAS  Google Scholar 

  81. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

    Article  PubMed  Google Scholar 

  82. Pan-Montojo FJ, and Funk RH (2010) Oral administration of rotenone using a gavage and image analysis of alpha-synuclein inclusions in the enteric nervous system. J Vis Exp. doi:10.3791/2123

  83. Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T (2011) Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull 34(1):92–96

    Article  PubMed  CAS  Google Scholar 

  84. Bayersdorfer F, Voigt A, Schneuwly S, Botella JA (2010) Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson’s disease. Neurobiol Dis 40(1):113–119

    Article  PubMed  CAS  Google Scholar 

  85. Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E (2011) Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone. Neuroscience 181:234–242

    Article  PubMed  CAS  Google Scholar 

  86. Chaves RS, Melo TQ, Martins SA, Ferrari MF (2010) Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 11:144

    Article  PubMed  CAS  Google Scholar 

  87. George S, Mok SS, Nurjono M, Ayton S, Finkelstein DI, Masters CL, Li QX, Culvenor JG (2010) alpha-Synuclein transgenic mice reveal compensatory increases in Parkinson’s disease-associated proteins DJ-1 and parkin and have enhanced alpha-synuclein and PINK1 levels after rotenone treatment. J Mol Neurosci 42(2):243–254

    Article  PubMed  CAS  Google Scholar 

  88. Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20(4):301–305

    Article  PubMed  CAS  Google Scholar 

  89. Morato GS, Lemos T, Takahashi RN (1989) Acute exposure to maneb alters some behavioral functions in the mouse. Neurotoxicol Teratol 11(5):421–425

    Article  PubMed  CAS  Google Scholar 

  90. Ishido M (2007) Melatonin inhibits maneb-induced aggregation of alpha-synuclein in rat pheochromocytoma cells. J Pineal Res 42(2):125–130

    Article  PubMed  CAS  Google Scholar 

  91. Choong CJ, and Say YH (2011) Neuroprotection of alpha-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson’s disease mutations A30P, A53T and E46K. Neurotoxicology 32:857–863

    Google Scholar 

  92. Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA (1988) Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 38(4):550–553

    Article  PubMed  CAS  Google Scholar 

  93. Soleo L, Defazio G, Scarselli R, Zefferino R, Livrea P, Foa V (1996) Toxicity of fungicides containing ethylene-bis-dithiocarbamate in serumless dissociated mesencephalic–striatal primary coculture. Arch Toxicol 70(10):678–682

    Article  PubMed  CAS  Google Scholar 

  94. Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK (2003) Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem 85(4):1075–1086

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84(2):336–346

    Article  PubMed  CAS  Google Scholar 

  96. Moretto A, Colosio C (2011) Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson’s disease. Neurotoxicology 32(4):383–391

    Article  PubMed  CAS  Google Scholar 

  97. Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP, Pennell KD, Miller GW (2007) Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204(2):619–630

    Article  PubMed  CAS  Google Scholar 

  98. Kitazawa M, Anantharam V, Kanthasamy AG (2001) Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med 31(11):1473–1485

    Article  PubMed  CAS  Google Scholar 

  99. Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V (2005) Dieldrin-induced neurotoxicity: relevance to Parkinson’s disease pathogenesis. Neurotoxicology 26(4):701–719

    Article  PubMed  CAS  Google Scholar 

  100. Kitazawa M, Anantharam V, Kanthasamy AG (2003) Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration. Neuroscience 119(4):945–964

    Article  PubMed  CAS  Google Scholar 

  101. Kirby ML, Barlow RL, Bloomquist JR (2002) Selective effects of cyclodiene insecticides on dopamine release in mammalian synaptosomes. Toxicol Appl Pharmacol 181(2):89–92

    Article  PubMed  CAS  Google Scholar 

  102. Miller GW, Kirby ML, Levey AI, Bloomquist JR (1999) Heptachlor alters expression and function of dopamine transporters. Neurotoxicology 20(4):631–637

    PubMed  CAS  Google Scholar 

  103. Karen DJ, Li W, Harp PR, Gillette JS, Bloomquist JR (2001) Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology 22(6):811–817

    Article  PubMed  CAS  Google Scholar 

  104. Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal injury. Trends Pharmacol Sci 20(10):424–429

    Article  PubMed  CAS  Google Scholar 

  105. Chou AP, Maidment N, Klintenberg R, Casida JE, Li S, Fitzmaurice AG, Fernagut PO, Mortazavi F, Chesselet MF, Bronstein JM (2008) Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem 283(50):34696–34703

    Article  PubMed  CAS  Google Scholar 

  106. Binukumar BK, Bal A, Kandimalla RJ, Gill KD (2010) Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, alpha synuclein aggregation, oxidative damage and behavioral changes. Mol Brain 3:35

    PubMed  CAS  Google Scholar 

  107. Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW (2006) Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol Appl Pharmacol 211(3):188–197

    Article  PubMed  CAS  Google Scholar 

  108. Bloomquist JR, Barlow RL, Gillette JS, Li W, Kirby ML (2002) Selective effects of insecticides on nigrostriatal dopaminergic nerve pathways. Neurotoxicology 23(4-5):537–544

    Article  PubMed  CAS  Google Scholar 

  109. Pittman JT, Dodd CA, Klein BG (2003) Immunohistochemical changes in the mouse striatum induced by the pyrethroid insecticide permethrin. Int J Toxicol 22(5):359–370

    PubMed  CAS  Google Scholar 

  110. Aleksandrowicz DR (1979) Endosulfan poisoning and chronic brain syndrome. Arch Toxicol 43(1):65–68

    Article  PubMed  CAS  Google Scholar 

  111. Jia Z, Misra HP (2007) Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life. Neurotoxicology 28(4):727–735

    Article  PubMed  CAS  Google Scholar 

  112. Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873(2):225–234

    Article  PubMed  CAS  Google Scholar 

  113. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20(24):9207–9214

    PubMed  CAS  Google Scholar 

  114. Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA (2002) Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology 23(4–5):621–633

    Article  PubMed  CAS  Google Scholar 

  115. Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson’s disease phenotype. Eur J Neurosci 18(3):589–600

    Article  PubMed  Google Scholar 

  116. Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM (2007) Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol 170(2):658–666

    Article  PubMed  CAS  Google Scholar 

  117. Jia Z, Misra HP (2007) Exposure to mixtures of endosulfan and zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells, in vitro. J Appl Toxicol 27(5):434–446

    Article  PubMed  CAS  Google Scholar 

  118. Reeves R, Thiruchelvam M, Baggs RB, Cory-Slechta DA (2003) Interactions of paraquat and triadimefon: behavioral and neurochemical effects. Neurotoxicology 24(6):839–850

    Article  PubMed  CAS  Google Scholar 

  119. Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW (2006) Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease. FASEB J 20(10):1695–1697

    Article  PubMed  CAS  Google Scholar 

  120. Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52(3):276–284

    Article  PubMed  Google Scholar 

  121. Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH, Parker D Jr, Price DL (2007) The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J Neuropathol Exp Neurol 66(4):251–257

    Article  PubMed  CAS  Google Scholar 

  122. Silva BA, Einarsdottir O, Fink AL, Uversky VN (2011) Modulating α-synuclein misfolding and fibrillation in vitro by agrochemicals. Res Rep Biol 2:43–56

    CAS  Google Scholar 

  123. Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H (2001) Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res 906(1–2):135–142

    Article  PubMed  CAS  Google Scholar 

  124. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56(2):446–451

    Article  PubMed  CAS  Google Scholar 

  125. Yasui M, Kihira T, Ota K (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13(3):593–600

    PubMed  CAS  Google Scholar 

  126. Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593(2):343–346

    Article  PubMed  CAS  Google Scholar 

  127. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20(2–3):239–247

    PubMed  CAS  Google Scholar 

  128. Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18(6):303–308

    Article  PubMed  CAS  Google Scholar 

  129. Altschuler E (1999) Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med Hypotheses 53(1):22–23

    Article  PubMed  CAS  Google Scholar 

  130. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–44296

    Article  PubMed  CAS  Google Scholar 

  131. Santner A, Uversky VN (2010) Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 2(6):378–392

    Article  PubMed  CAS  Google Scholar 

  132. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744

    Article  PubMed  CAS  Google Scholar 

  133. Munishkina LA, Fink AL, Uversky VN (2009) Accelerated fibrillation of alpha-synuclein induced by the combined action of macromolecular crowding and factors inducing partial folding. Curr Alzheimer Res 6(3):252–260

    Article  PubMed  CAS  Google Scholar 

  134. Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222(3):599–620

    Article  PubMed  CAS  Google Scholar 

  135. Mirzaei H, Schieler JL, Rochet JC, Regnier F (2006) Identification of rotenone-induced modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry. Anal Chem 78(7):2422–2431

    Article  PubMed  CAS  Google Scholar 

  136. Kalivendi SV, Yedlapudi D, Hillard CJ, Kalyanaraman B (2010) Oxidants induce alternative splicing of alpha-synuclein: implications for Parkinson’s disease. Free Radic Biol Med 48(3):377–383

    Article  PubMed  CAS  Google Scholar 

  137. Halbach OVBU, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Article  CAS  Google Scholar 

  138. Snyder H, Wolozin B (2004) Pathological proteins in Parkinson’s disease: focus on the proteasome. J Mol Neurosci 24(3):425–442

    Article  PubMed  CAS  Google Scholar 

  139. Martin I, Dawson VL, and Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325

    Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Alexey V. Uversky for careful reading and editing this manuscript. This work was supported in part by the Program of the Russian Academy of Sciences for the “Molecular and Cellular Biology” (to V.N.U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky.

Additional information

Prof. Anthony L. Fink has passed away on March 2, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, B.A., Breydo, L., Fink, A.L. et al. Agrochemicals, α-Synuclein, and Parkinson’s Disease. Mol Neurobiol 47, 598–612 (2013). https://doi.org/10.1007/s12035-012-8333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8333-2

Keywords

Navigation