Skip to main content
Log in

Fabrication of MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+): catalytic effects for the reduction of 2- or 4-nitroanilines in water

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Five new MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+) materials were developed for the reduction of nitroarenes as catalysts by conventional solid state reaction at 1300C. The prepared materials were characterized by thermal analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen adsorption–desorption analysis. The catalytic activities of the prepared catalysts were tested in the reduction of 2- or 4-nitroanilines in aqueous media at ambient temperature in the presence of NaBH4 by UV–vis spectrophotometer. Furthermore, the MgAl2Si2O8 : M0.01 catalysts can be recovered by filtration and reused for five cycles for the reduction of 2-nitroaniline. These results show that the MgAl2Si2O8 : M0.01 catalysts can be used in practical applications in the reduction of nitroanilines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Song-Song Z, Song J-M, Niu H-L, Mao C-J, Zhang S-Y and Shen Y-H 2014, J Alloys Compd. 585 40

    Article  Google Scholar 

  2. Zenga T, Zhanga X-L, Niua H-Y, Maa Y-R, Li W-H and Caia Y 2013 Appl. Catal. B Environ. 134–135 26

  3. Demirelli M, Karaoglu E, Baykal A, Sozeri H and Uysal E 2014 J. Alloys Compd. 582 201

    Article  Google Scholar 

  4. Aksenov S M, Rastsvetaeva R K, Rassylov V A, Bolotina N B, Taroev V K and Tauson V L 2013 Microporous Mesoporous Mater. 182 95

    Article  Google Scholar 

  5. Neelakandeswaria N, Sangamia G, Emayavarambana P, Babub S G, Karvembub R and Dharmaraja N 2012 J. Mol. Catal. A: Chem. 356 90

    Article  Google Scholar 

  6. Ambrogi V, Latterini L, Marmottini F, Tiralti M C and Ricci M 2013 J. Pharm. Innov. 8 212

    Article  Google Scholar 

  7. Kim Y K, Rajesh K P and Yu J-S 2013, J. Hazard. Mater. 260 350

    Article  Google Scholar 

  8. Tušar N N, Laha S C, Cecowski S, Arcon I, Kaucic V and Glaser R 2011 Microporous Mesoporous Mater. 146 166

    Article  Google Scholar 

  9. Shao G N, Kim Y, Imran S M, Jeong Jeon S, Sarawade P B, Hilonga A, Kim J-K and Kim H T 2013 Microporous Mesoporous Mater. 179 111

    Article  Google Scholar 

  10. Ozpozan Kalaycioglu N and Circir E 2012 J. Alloys Compd. 510 6

  11. Circir E and Ozpozan Kalaycioglu N 2012 Mater. Res. Bull. 47 1138

  12. Ozpozan Kalaycioglu N and Circir E 2013 J. Therm. Anal. Calorim. 111 273

  13. Circir E and Ozpozan Kalaycioglu N 2012 J. Therm. Anal. Calorim. 110 1179

  14. Chang C F, Wu Y L and Hou S S 2009 Colloids Surf. A 336 159

    Article  Google Scholar 

  15. Viswanathan B, Sivasanker S and Ramasamy A V 2002 Catalysis: principles and applications (New Delhi: Narosa Publishing House)

    Google Scholar 

  16. Padmaja P, Warrier K G K, Padmanabhan M, Wunderlich W, Berry F J, Mortimer M and Creamer N J 2006 Mater. Chem. Phys. 95 56

    Article  Google Scholar 

  17. Ciuffi K J, Nassar E J, Rocha L A, da Rocha Z N, Nakagaki S, Mata G, Trujillano R, Vicente M A, Korili S A and Gil A 2007 Appl. Catal. A: Gen. 319 153

    Article  Google Scholar 

  18. Dayan S, Ozpozan Kalaycioglu N, Dayan O, Ozdemir N, Dincer M and Buyukgungor O 2013 Dalton Trans. 42 4957

    Article  Google Scholar 

  19. Pournara A, Kovala-Demertzi D, Kourkoumelis N, GeorgakopoulosIoannis S and Kostas D 2014 Catal. Commun. 43 57

    Article  Google Scholar 

  20. Rochaa B G M, Valishinaa E A, Chaya R S, Guedes da Silvaa M F C, Buslaeva T M, Pombeiroa A J L, Kukushkind V Y and Luzyanin K V 2014 J. Catal. 309 79

    Article  Google Scholar 

  21. Tsonchevaa T, Genovaa I, Stoyanovab M, Pohlb M -M, Nickolovc R, Dimitrova M, Sarcadi-Priboczkid E, Mihaylove M, Kovachevae D and Hadjiivanov K 2014 Appl. Catal. B: Environ. 147 684

    Article  Google Scholar 

  22. Kumbhar A, Jadhav S, Kamble S, Rashinkar G and Salunkhe R 2013 Tetrahedron Lett. 54 1331

    Article  Google Scholar 

  23. Wu G, Wang X, Guan N and Li L, Appl. Catal. B: Environ. 136–137 177

  24. Marais E and Nyokong T 2008 J. Hazard. Mater. 152 293

    Article  Google Scholar 

  25. O’Connor O A and Young L Y 1989 Environ. Toxicol. Chem. 8 853

    Article  Google Scholar 

  26. Dieckmann M S and Gray K A 1996 Water Res. 30 1169

    Article  Google Scholar 

  27. Oturan M A, Peironten J, Chartrin P and Acher A J 2000 Environ. Sci. Technol. 34 3474

    Article  Google Scholar 

  28. Modirsshahla N, Behnajady M A and Mohammadi-Aghdam S 2008 J. Hazard. Mater. 154 778

    Article  Google Scholar 

  29. Canizares P, Saez C, Lobato J and Rodrigo M A 2004 Ind. Eng. Chem. Res. 43 1944

    Article  Google Scholar 

  30. Chiou J R, Lai B H, Hsu K C and Chen D H 2013 J. Hazard. Mater. 248–249 394

    Article  Google Scholar 

  31. Khan F, Pandey J, Vikram S, Pal D and Cameotra S S 2013 J. Hazard. Mater. 254–255 72

    Article  Google Scholar 

  32. Kamaraj R, Davidson D J, Sozhan G and Vasudevan S 2014 J. Tai. Inst. Chem. Eng. 45 2943

    Article  Google Scholar 

  33. Kamaraj R, Davidson D J, Sozhan G and Vasudevan S 2014 J. Environ. Chem. Eng. 2 2068

    Article  Google Scholar 

  34. Vasudevan S 2014 J. Water Process Eng. 2 53

    Article  Google Scholar 

  35. Vasudevan S and Oturan M A 2014 Environ. Chem. Lett. 12 97

    Article  Google Scholar 

  36. Sun J H, Sun S P, Fan M H, Guo H Q, Qiao L P and Sun R X 2007 J. Hazard. Mater. 148 172

    Article  Google Scholar 

  37. Goyal A, Bansal S and Singhal S 2014 Int. J. Hydrogen Energy 39 4895

    Article  Google Scholar 

  38. Sarmah P P and Dutta D K 2012 Green Chem. 14 1086

    Article  Google Scholar 

  39. Shah M, Guo Q -X and Fu Y 2015 Catal. Commun. 65 85

    Article  Google Scholar 

  40. Shokouhimehr M, Kim T, Jun S W, Shin K, Jang Y, Kim B H, Kim J and Hyeon T 2014 Appl. Catal. A: Gen. 476 133

    Article  Google Scholar 

  41. Shil A K, Sharma D, Guha N R and Das P 2012 Tetrahedron Lett. 53 4858

    Article  Google Scholar 

  42. Sharma R K, Monga Y and Puri A 2014 J. Mol. Catal. A: Chem. 393 84

    Article  Google Scholar 

  43. Salam N, Banerjee B, Roy A S, Mondal P, Roy S, Bhaumik A and Islam M 2014 Appl. Catal. A: Gen. 477 184

    Article  Google Scholar 

  44. Davarpanah J and Kiasat A R 2013 Cat. Commun. 41 6

    Article  Google Scholar 

  45. He G, Liu W, Sun X, Chen Q, Wang X and Chen H 2013 Mater. Res. Bull. 48 1885

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support granted by Erciyes University (ERUBAP).

Electronic Supplementary Material

Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NILGUN KALAYCIOGLU OZPOZAN.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 35.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DAYAN, S., ÖZTÜRK, S., KAYACI, N. et al. Fabrication of MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+): catalytic effects for the reduction of 2- or 4-nitroanilines in water. Bull Mater Sci 38, 1651–1663 (2015). https://doi.org/10.1007/s12034-015-0981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0981-1

Keywords

Navigation