Skip to main content
Log in

Cloning, Characterization, and Bacterial Over-Expression of an Osmotin-like Protein Gene from Solanum nigrum L. with Antifungal Activity Against Three Necrotrophic Fungi

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A new osmotin-like protein gene from Solanum nigrum L. var indica (SindOLP) was cloned and overexpressed in Escherichia coli. The full-length intron-less gene is 744 bp, encoding a mature protein of 247 amino acids with a molecular mass of 26 kDa. The protein has an N-terminal cleavable signal sequence of 21 amino acids. There is the Thaumatin family signature pattern, with one each of amidation, N-myristoylation, casein kinase II phosphorylation, tyrosine kinase phosphorylation, and protein kinase C phosphorylation sites. Hydropathy plot showed that it has six transmembrane helices. It has antifungal activity and can permeabilize fungal hyphae and spores. SindOLP is most active at pH 8, 25 °C and its antifungal activity is retained after 75 °C for 30 min. SindOLP inhibits fungal spore germination. The protein however lacks glucanase activity. The potential for SindOLP in developing fungus-resistant, transgenic crops is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, N. K., Kumar, K. R. R., Kumar, D., Shukla, P., & Kirti, P. B. (2013). Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One, 8(12), e83963. doi:10.1371/journal.pone.0083963.

    Article  Google Scholar 

  2. Das, M., Chauhan, H., Chhibbar, A., RizwanulHaq, Q. M., & Khurana, P. (2011). High efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2 by constitutive and inducible expression of tobacco osmotin. Transgenic Research, 20, 231–246.

    Article  CAS  Google Scholar 

  3. Patade, V. Y., Khatri, D., Kumari, M., Grover, A., Gupta, S. M., & Ahmed, Z. (2013). Cold tolerance in osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. Springer Plus, 2, 117.

    Article  Google Scholar 

  4. Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., & Bansal, K. C. (2010). Overexpression of osmotin gene confers tolerance to salt and draught stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma, 245, 133–141.

    Article  CAS  Google Scholar 

  5. Campos, M. D., Silva, M. S., Magalhaes, C. P., Ribeiro, S. G., Sarto, R. P. D., Vieira, E. A., & de Sa Grossi, M. F. (2008). Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum. Microbial Cell Factories, 7, 7.

    Article  Google Scholar 

  6. Freitas, C. D. T., Lopes, J. L. S., Beltramini, L. M., Oliveira, R. S. B., Oliveira, J. T. A., & Ramos, M. V. (2011). Osmotin from Calotropis procera latex: New insights into structure and antifungal properties. Biochimica et Biophysica Acta, 1808, 2501–2507.

    Article  Google Scholar 

  7. Tzou, Y. M., Huang, T. S., Huggins, K. W., Chin, B. A., Simonne, A. H., & Singh, N. K. (2011). Expression of truncated tobacco osmotin in Escherichia coli: purification and antifungal activity. Biotechnology Letters, 33, 539–543.

    Article  CAS  Google Scholar 

  8. Subramanyam, K., Arun, M., Mariashibu, T. S., Theboral, J., Rajesh, M., Singh, N. K., et al. (2012). Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and inhibit infections. Planta, 236, 1909–1925.

    Article  CAS  Google Scholar 

  9. Jami, S. K., Anuradha, T. S., Guruprasad, L., & Kirti, P. B. (2007). Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). Journal of Plant Physiology, 164, 238–252.

    Article  CAS  Google Scholar 

  10. Vasavirama, K., & Kirti, P. B. (2012). Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Functional & Integrative Genomics, 12, 625–634.

    Article  CAS  Google Scholar 

  11. Chowdhury, S., Basu, A., Raychaudhuri, T., & Kundu, S. (2014). In-vitro characterization of the behaviour of Macrophomina phaseolina (Tassi) Goid at the rhizosphere and during early infection of roots of resistant and susceptible varieties of sesame. European Journal of Plant Pathology, 138, 361–375.

    Article  Google Scholar 

  12. Chowdhury, S., Basu, A., & Kundu, S. (2014). A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma, 251, 1175–1190.

    Article  CAS  Google Scholar 

  13. Liang, X. Q., Holbrook, C. C., Lynch, R. E., & Guo, B. Z. (2005). β-1, 3-Glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and co-purifies with a conglutin-like protein. Phytopathology, 95, 506–511.

    Article  CAS  Google Scholar 

  14. Beer, A. D., & Vivier, M. A. (2008). Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biology, 8, 75.

    Article  Google Scholar 

  15. Monteiro, S., Barakat, M., Piçarra-Pereira, M. A., Teixeira, A. R., & Ferreira, R. B. (2003). Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi. Phytopathology, 93, 1505–1512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India. S. Chowdhury and A. Basu received University Grants Commission (UGC, New Delhi)-NET and Council for Scientific and Industrial Research (CSIR, New Delhi)-NET senior research fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surekha Kundu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Basu, A. & Kundu, S. Cloning, Characterization, and Bacterial Over-Expression of an Osmotin-like Protein Gene from Solanum nigrum L. with Antifungal Activity Against Three Necrotrophic Fungi. Mol Biotechnol 57, 371–381 (2015). https://doi.org/10.1007/s12033-014-9831-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9831-4

Keywords

Navigation