Skip to main content

Advertisement

Log in

Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

It was recently demonstrated that interleukin-6 (IL-6) induces the epithelial-to-mesenchymal transition (EMT) in cholangiocarcinoma (CCA), but the underlying molecular mechanism remains to be explored. In this study, we studied the role of suppresser of cytokine signaling 3 (SOCS3), a negative feedback regulator of IL-6/STAT3, in the IL-6-induced EMT in CCA. Treatment with IL-6 induced the EMT by decreasing the E-cadherin expression and increasing the expression of N-cadherin and vimentin. Using wound healing and invasion assays, we found that IL-6 promoted cell motility. Further, a stably transfected cell line overexpressing SOCS3 was constructed. Enhanced SOCS3 expression decreased IL-6-induced cell invasion and EMT in parallel with downregulating the IL-6/STAT3 pathway. In contrast, SOCS3 silencing using siRNA exhibited no effect on the cell invasive ability and EMT. Finally, an in vivo study indicated that the enhancement of SOCS3 expression decreased metastasis compared with the control, and this effect was achieved by the repression of p-STAT3, N-cadherin and vimentin, and the induction of E-cadherin assessed by Western blot analysis. Our results suggest that enhanced expression of SOCS3 can antagonize IL-6-induced EMT and cell metastasis by abrogating the IL-6/STAT3 pathway. These data establish that SOCS3 plays a role in the EMT in CCA and may provide novel therapeutic strategies for CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29. doi:10.1053/j.gastro.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  2. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755–62. doi:10.1097/01.sla.0000251366.62632.d3.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lau SH, Lau WY. Current therapy of hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2012;11(1):12–7. doi:10.1016/S1499-3872(11)60119-7.

    Article  CAS  PubMed  Google Scholar 

  4. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. doi:10.1172/JCI39104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gores GJ. Cholangiocarcinoma: current concepts and insights. Hepatology. 2003;37(5):961–9. doi:10.1053/jhep.2003.50200.

    Article  PubMed  Google Scholar 

  6. Matsumoto K, Fujii H, Michalopoulos G, Fung JJ, Demetris AJ. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro. Hepatology. 1994;20(2):376–82. doi:10.1002/hep.1840200217.

    Article  CAS  PubMed  Google Scholar 

  7. Meng F, Yamagiwa Y, Ueno Y, Patel T. Over-expression of Interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol. 2006;44(6):1055–65. doi:10.1016/j.jhep.2005.10.030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yokomuro S, Tsuji H, Lunz JG III, Sakamoto T, Ezure T, Murase N, et al. Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic biliary epithelial cells. Hepatology. 2000;32(1):26–35. doi:10.1053/jhep.2000.8535.

    Article  CAS  PubMed  Google Scholar 

  9. Nehls O, Gregor M, Klump B. Serum and bile markers for cholangiocarcinoma. Semin Liver Dis. 2004;24(2):139–54. doi:10.1055/s-2004-828891.

    Article  CAS  PubMed  Google Scholar 

  10. Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell. 2009;15:79–80. doi:10.1016/j.ccr.2009.01.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Isomoto H, Kobayashi S, Werneburg NW, Bronk SF, GuCCAiardi ME, Frank DA, et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology. 2005;42:1329–38. doi:10.1002/hep.20966.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7. doi:10.1038/onc.2009.180.

    Article  CAS  PubMed  Google Scholar 

  13. Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 2011;9(12):1658–67. doi:10.1158/1541-7786.MCR-11-0271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhao Z, Cheng X, Wang Y, Han R, Li L, Xiang T, et al. Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis. PLoS ONE. 2014;9(4):e95884. doi:10.1371/journal.pone.0095884.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAK-STAT. 2013;2(3):e24053. doi:10.4161/jkst.24053.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signaling pathway. Semin Cell Dev Biol. 2008;19(4):414–22. doi:10.1016/j.semcdb.2008.07.010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, et al. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene. 2005;24:6699–708. doi:10.1038/sj.onc.1208818.

    Article  CAS  PubMed  Google Scholar 

  18. He B, You L, Uematsu K, Zang K, Xu Z, Lee AY, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA. 2003;100(24):14133–8. doi:10.1073/pnas.2232790100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005;24(42):6406–17. doi:10.1038/sj.onc.1208788.

    CAS  PubMed  Google Scholar 

  20. Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology. 2007;132(1):384–96. doi:10.1053/j.gastro.2006.10.037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rossa C Jr, Sommer G, Spolidorio LC, Rosenzweig SA, Watson DK, Kirkwood KL. Loss of expression and function of socs3 is an early event in HNSCC: altered subcellular localization as a possible mechanism involved in proliferation, migration and invasion. PLoS ONE. 2012;7(9):e45197. doi:10.1371/journal.pone.0045197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jiang GX, Zhong XY, Cui YF, Liu W, Tai S, Wang ZD, et al. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro. Mol Biol Rep. 2010;37(8):3813–8. doi:10.1007/s11033-010-0036-z.

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1(6–7):303–14. doi:10.1002/emmm.200900043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;1:i104–8. doi:10.1136/ard.2010.140145.

    Article  Google Scholar 

  25. Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J, et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer. 2009;100(1):134–44. doi:10.1038/sj.bjc.6604794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, et al. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial–mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer. 2013;49(7):1725–40. doi:10.1016/j.ejca.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells. 1999;4(6):339–51. doi:10.1046/j.1365-2443.1999.00263.x.

    Article  CAS  PubMed  Google Scholar 

  28. Evans MK, Yu CR, Lohani A, Mahdi RM, Liu X, Trzeciak AR, et al. Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals. Oncogene. 2007;26(13):1941–8. doi:10.1038/sj.onc.1209993.

    Article  CAS  PubMed  Google Scholar 

  29. Bellezza I, Neuwirt H, Nemes C, Cavarretta IT, Puhr M, Steiner H, et al. Suppressor of cytokine signaling-3 antagonizes cAMP effects on proliferation and apoptosis and is expressed in human prostate cancer. Am J Pathol. 2006;169(6):2199–208. doi:10.2353/ajpath.2006.060171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493–503. doi:10.1016/S1470-2045(14)70263-3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81170426).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the study were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Fu Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, QX., Jiang, XM., Wang, ZD. et al. Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis. Med Oncol 32, 105 (2015). https://doi.org/10.1007/s12032-015-0553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0553-7

Keywords

Navigation