Skip to main content
Log in

Scheme of Ischaemia-triggered Agents during Brain Infarct Evolution in a Rat Model of Permanent Focal Ischaemia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The impact of therapeutic intervention in stroke depends on its appropriate timing during infarct evolution. We have studied markers of brain tissue damage initiated by permanent occlusion of the middle cerebral artery (MCAO) at three time points during which the infarct spread (1, 3 and 6 h). Based on Evans Blue extravasation and immunohistochemical detection of neurons, we confirmed continuous disruption of blood-brain barrier and loss of neurons in the ischaemic hemisphere that peaked at the sixth hour, especially in the core. Glutamate content started to rise dramatically in the entire hemisphere during the first 3 h; the highest level was determined in the core 6 h after MCAO (141 % increase). Moreover, the enzyme antioxidant defence grew by about 42 % since the first hour in the ipsilateral penumbra. Enzymes of the apoptotic pathway as well as mitochondrial enzyme release were detected since the third hour of MCAO in the ischaemic hemisphere; all achieved their maxima in the penumbra during both time periods (except cytochrome C). In conclusion, the preserved integrity of mitochondrial membrane and incompletely developed process of apoptosis may contribute to the better therapeutic outcome after ischaemic attack; however, a whole brain response should not be omitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    Article  CAS  PubMed  Google Scholar 

  • Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1046, discussion 1047

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12:723–725

    Article  CAS  PubMed  Google Scholar 

  • Ayata C (2013) Spreading depression and neurovascular coupling. Stroke 44:S87–S89

    Article  PubMed  Google Scholar 

  • Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  CAS  PubMed  Google Scholar 

  • Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M (2013) Development of a pattern in biochemical parameters in the core and penumbra during infarct evolution after transient MCAO in rats. Neurochem Int 62:8–14

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Danielisova V, Nemethova M, Gottlieb M, Burda J (2005) Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem Res 30:559–565

    Article  CAS  PubMed  Google Scholar 

  • Dief AE, Jirikowski GF, El-Sabah Ragab K, Ibrahim HS (2008) Ipsilateral and contralateral cortical apoptosis in rats after unilateral middle cerebral artery occlusion. Anatomy 2:39–48

    Article  Google Scholar 

  • Du C, Hu R, Csernansky CA, Hsu CY, Choi DW (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab 16:195–201

    Article  CAS  PubMed  Google Scholar 

  • Durukan A, Tatlisumak T (2010) Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Endres M, Namura S, Shimizu-Sasamata M, Waeber C, Zhang L, Gomez-Isla T, Hyman BT, Moskowitz MA (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18:238–247

    Article  CAS  PubMed  Google Scholar 

  • Fishman RA (1975) Brain edema. N Engl J Med 293:706–711

    Article  CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Haller E, Williams SN et al (2014) Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol 522:3120–3137

    Article  PubMed  Google Scholar 

  • Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497

    Article  CAS  PubMed  Google Scholar 

  • Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23:11602–11610

    CAS  PubMed  Google Scholar 

  • Hata R, Maeda K, Hermann D, Mies G, Hossmann KA (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:306–315

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55:257–270

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA (2012) The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 32:1310–1316

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH (1999) Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Krajewski S, Krajewska M, Ellerby LM et al (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 96:5752–5757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kravcukova P, Danielisova V, Nemethova M, Burda J, Gottlieb M (2009) Transient Forebrain ischemia impact on lymphocyte DNA damage, glutamic acid level, and SOD activity in blood. Cell Mol Neurobiol 29:887–894

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Copin JC, Reola LF, Calagui B, Gobbel GT, Chen SF, Sato S, Epstein CJ, Chan PH (1998) Reduced mitochondrial manganese-superoxide dismutase activity exacerbates glutamate toxicity in cultured mouse cortical neurons. Brain Res 814:164–170

    Article  CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Liu R, Yuan H, Yuan F, Yang SH (2012) Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res 34:331–337

    Article  CAS  PubMed  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  • Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    CAS  PubMed  Google Scholar 

  • Noshita N, Sugawara T, Fujimura M, Morita-Fujimura Y, Chan PH (2001) Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:557–567

    Article  CAS  PubMed  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466

    Article  PubMed  Google Scholar 

  • Redecker C, Wang W, Fritschy JM, Witte OW (2002) Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 22:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8:41–49

    Article  CAS  PubMed  Google Scholar 

  • Saver JL, Smith EE, Fonarow GC, Reeves MJ, Zhao X, Olson DM, Schwamm LH (2010) The “golden hour” and acute brain ischemia: presenting features and lytic therapy in >30,000 patients arriving within 60 minutes of stroke onset. Stroke 41:1431–1439

    Article  PubMed Central  PubMed  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    CAS  PubMed  Google Scholar 

  • Tsantes A, Tsangaris I, Kopterides P et al (2013) The role of procalcitonin and IL-6 in discriminating between septic and non-septic causes of ALI/ARDS: a prospective observational study. Clin Chem Lab Med:1–8

  • Yao H, Takasawa R, Fukuda K, Shiokawa D, Sadanaga-Akiyoshi F, Ibayashi S, Tanuma S, Uchimura H (2001) DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res 91:112–118

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Ren C, Chen X, Shen J (2012) From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 13:173–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovak Grant Agencies VEGA 2/0012/15 and VEGA 2/0045/15.

Conflict of interest

The authors have no conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonova, P., Danielisova, V., Nemethova, M. et al. Scheme of Ischaemia-triggered Agents during Brain Infarct Evolution in a Rat Model of Permanent Focal Ischaemia. J Mol Neurosci 57, 73–82 (2015). https://doi.org/10.1007/s12031-015-0578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0578-6

Keywords

Navigation