Skip to main content
Log in

Relaxin-3/INSL7 Regulates the Stress-response System in the Rat Hypothalamus

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Relaxin-3 (RLN3) is a neuropeptide belonging to the insulin–relaxin superfamily. RLN3-expressing neurons are predominantly located in the dorsal pons known as the nucleus incertus, and project their axons to the forebrain including the hypothalamus. RLN3 has been suggested to be involved in the stress response. In the present study, we investigated the hypothalamic action of RLN3 in the stress-response system by intracerebroventricular (icv) administration of RLN3. Compared with saline icv injection, 1 nmol icv RLN3 injection induced c-Fos expression in the paraventricular nucleus of the hypothalamus (PVN) at 1 h after administration. Some RLN3-induced c-Fos-positive cells in the PVN were also corticotropin-releasing factor (CRF)-expressing neurons. CRF and c-fos mRNA levels in the PVN were increased at 2 h after RLN3 administration. Plasma adrenocorticotropic hormone (ACTH) levels were also increased after RLN3 administration. These results suggest that RLN3 is able to stimulate the hypothalamopituitary CRF–ACTH system during the acute response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaya F, Tanaka M, Hayashi S et al (2001) Hypothalamo-pituitary-adrenal axis sensitization after chronic salt loading. Neuroendocrinology 73:185–193

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Shen PJ, Ma S et al (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology 58:145–155

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Samuel CS, Burazin TC et al (2002) Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem 277:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Ivell R, Sanborn BM et al (2005) Receptors for relaxin family peptides. Ann NY Acad Sci 1041:61–76

    Article  CAS  PubMed  Google Scholar 

  • Blume A, Torner L, Liu Y et al (2009) Prolactin activates mitogen-activated protein kinase signaling and corticotropin releasing hormone transcription in rat hypothalamic neurons. Endocrinology 150:1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Boels K, Hermans-Borgmeyer I, Schaller HC (2004) Identification of a mouse orthologue of the G-protein-coupled receptor SALPR and its expression in adult mouse brain and during development. Brain Res Dev Brain Res 152:265–268

    Article  CAS  PubMed  Google Scholar 

  • Burazin TC, Bathgate RA, Macris M et al (2002) Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the dorsal tegmental region of brain. J Neurochem 82:1553–1557

    Google Scholar 

  • Chen J, Kuei C, Sutton SW et al (2005) Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther 312:83–95

    Article  CAS  PubMed  Google Scholar 

  • Emanuel RL, Girard DM, Thull DL et al (1990) Second messengers involved in the regulation of corticotropin-releasing hormone mRNA and peptide in cultured rat fetal hypothalamic primary cultures. Endocrinology 126:3016–3021

    Article  CAS  PubMed  Google Scholar 

  • Hida T, Takahashi E, Shikata K et al (2006) Chronic intracerebroventricular administration of relaxin-3 increases body weight in rats. J Recept Signal Transduct Res 26:147–158

    Article  CAS  PubMed  Google Scholar 

  • Kizawa H, Nishi K, Ishibashi Y et al (2003) Production of recombinant human relaxin 3 in AtT20 cells. Regul Pept 113:79–84

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Eriste E, Sutton S et al (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 278:50754–50764

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen J, Kuei C et al (2005) Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol 67:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Shen PJ, Burazin TC et al (2006) Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action? Neuroscience 141:329–344

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Bonaventure P, Ferraro T et al (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 144:165–190

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Olucha-Bordonau FE, Hossain MA et al (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem 16:730–742

    Article  PubMed  Google Scholar 

  • Maruyama M, Matsumoto H, Fujiwara K et al (2001) Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology 142:2032–2038

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kamohara M, Sugimoto T et al (2000) The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene 248:183–189

    Article  CAS  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL et al (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology 146:3295–3300

    Article  CAS  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, White NE et al (2007) Hypothalamic mapping of orexigenic action and Fos-like immunoreactivity following relaxin-3 administration in male Wistar rats. Am J Physiol Endocrinol Metab 292:E913–E919

    Article  CAS  PubMed  Google Scholar 

  • Otsubo H, Onaka T, Suzuki H et al (2010) Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake. Peptides 31:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in sterotaxic coordinates, Fourthth edn. Academic, San Diego

    Google Scholar 

  • Sutton SW, Bonaventure P, Kuei C et al (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 80:298–307

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Iijima N, Amaya F et al (1999) NGFI-A gene expression induced in the rat suprachiasmatic nucleus by photic stimulation: spread into hypothalamic periventricular somatostatin neurons and GABA receptor involvement. Eur J Neurosci 11:3178–3184

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Iijima N, Miyamoto Y et al (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci 21:1659–1670

    Article  PubMed  Google Scholar 

  • Tanaka M, Watanabe Y, Yoshimoto K (2009) Regulation of relaxin 3 gene expression via cAMP-PKA in a neuroblastoma cell line. J Neurosci Res 87:820–829

    Article  CAS  PubMed  Google Scholar 

  • van der Westhuizen ET, Werry TD, Sexton PM et al (2007) The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism. Mol Pharmacol 71:1618–1629

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nishi for providing us human RLN3. This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan for M.T. (No. 21500329), and the Research Project in Kyoto Prefectural University of Medicine Research Institute for Neurological Diseases and Geriatrics to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Tanaka.

Additional information

This manuscript is prepared for the special issue of GPCR2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Miyamoto, Y., Matsuda, T. et al. Relaxin-3/INSL7 Regulates the Stress-response System in the Rat Hypothalamus. J Mol Neurosci 43, 169–174 (2011). https://doi.org/10.1007/s12031-010-9468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9468-0

Keywords

Navigation