Skip to main content

Advertisement

Log in

Expression of Astrocytic Type 2 Angiotensin Receptor in Central Nervous System Inflammation Correlates With Blood–Brain Barrier Breakdown

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB), a complex of endothelial and glial barriers, controls passage of cells and solutes between the blood and central nervous system (CNS). Blood–brain barrier breakdown refers to entry of cells and/or solutes. We were interested whether the renin–angiotensin system is involved during BBB breakdown. We studied the type 2 angiotensin receptor AT2 because of its suggested neuroprotective role. Two models of brain inflammation were used to distinguish solute versus cellular barrier functions. Both leukocytes and horseradish peroxidase (HRP) accumulated in the perivascular space of transgenic mice expressing the chemokine CCL2 in the CNS, indicating selective endothelial effects. Cellular infiltration and HRP leakage across the glia limitans to the parenchyma were induced by pertussis toxin (PTx) treatment. By contrast, there was no detectable HRP leakage in the hippocampus dentate gyrus after transection of axonal afferents, despite that leukocytes infiltrate to this site. Immunoreactivity for AT2 was increased on glia limitans astrocytes in PTx-treated CCL2 transgenics, whereas AT2 immunostaining was not induced in the lesion-reactive dentate gyrus. Our results suggest that AT2 induction correlates with solute leakage rather than cellular infiltration. This points to a role for AT2 in selective changes to the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agrawal S et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Allen AM, Zhuo J, Mendelsohn FA (2000) Localization and function of angiotensin AT1 receptors. Am J Hypertens 13:31S–38S

    Article  CAS  PubMed  Google Scholar 

  • Alliot F, Rutin J, Leenen PJ, Pessac B (1999) Brain parenchyma vessels and the angiotensin system. Brain Res 830:101–112

    Article  CAS  PubMed  Google Scholar 

  • Babcock A, Owens T (2003) Chemokines in experimental autoimmune encephalomyelitis and multiple sclerosis. Adv Exp Med Biol 520:120–132

    CAS  PubMed  Google Scholar 

  • Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23:7922–7930

    CAS  PubMed  Google Scholar 

  • Babcock AA, Toft-Hansen H, Owens T (2008) Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol 181:6481–6490

    CAS  PubMed  Google Scholar 

  • Bechmann I, Nitsch R (2000) Involvement of non-neuronal cells in entorhinal–hippocampal reorganization following lesions. Ann N Y Acad Sci 911:192–206

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26:485–495

    Article  CAS  PubMed  Google Scholar 

  • Fagan AM, Gage FH (1990) Cholinergic sprouting in the hippocampus: a proposed role for IL-1. Exp Neurol 110:105–120

    Article  CAS  PubMed  Google Scholar 

  • Fogarty DJ, Matute C (2001) Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 35:131–146

    Article  CAS  PubMed  Google Scholar 

  • Fogarty DJ, Sanchez-Gomez MV, Matute C (2002) Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia 39:304–313

    Article  PubMed  Google Scholar 

  • Fournier A, Messerli FH, Achard JM, Fernandez L (2004) Cerebroprotection mediated by angiotensin II: a hypothesis supported by recent randomized clinical trials. J Am Coll Cardiol 43:1343–1347

    Article  PubMed  Google Scholar 

  • Fuentes ME et al (1995) Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 155:5769–5776

    CAS  PubMed  Google Scholar 

  • Fux M, van Rooijen N, Owens T (2008) Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation. J Neuroimmunol 203:64–72

    Article  CAS  PubMed  Google Scholar 

  • Gallinat S, Yu M, Dorst A, Unger T, Herdegen T (1998) Sciatic nerve transection evokes lasting up-regulation of angiotensin AT2 and AT1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 57:111–122

    Article  CAS  PubMed  Google Scholar 

  • Glabinski AR et al (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368

    CAS  PubMed  Google Scholar 

  • Greter M et al (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    Article  CAS  PubMed  Google Scholar 

  • Huang D et al (2002) Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 22:10633–10642

    CAS  PubMed  Google Scholar 

  • Huang D et al (2005) Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 19:761–772

    Article  CAS  PubMed  Google Scholar 

  • Hulkower K et al (1993) Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol 150:2525–2533

    CAS  PubMed  Google Scholar 

  • Ichiki T et al (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748–750

    Article  CAS  PubMed  Google Scholar 

  • Iwai M et al (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    Article  CAS  PubMed  Google Scholar 

  • Jensen MB, Finsen B, Zimmer J (1997) Morphological and immunophenotypic microglial changes in the denervated fascia dentata of adult rats: correlation with blood–brain barrier damage and astroglial reactions. Exp Neurol 143:103–116

    Article  CAS  PubMed  Google Scholar 

  • Jensen MB, Hegelund IV, Lomholt ND, Finsen B, Owens T (2000) IFNgamma enhances microglial reactions to hippocampal axonal degeneration. J Neurosci 20:3612–3621

    CAS  PubMed  Google Scholar 

  • Johren O, Viswanathan M, Saavedra JM (1995) Expression of non-angiotensin II-125I-CGP 42112 binding sites on activated microglia after kainic acid induced neurodegeneration. Brain Res 702:153–161

    Article  CAS  PubMed  Google Scholar 

  • Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12:70–88

    Article  CAS  PubMed  Google Scholar 

  • Korner H et al (1997) Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 186:1585–1590

    Article  CAS  PubMed  Google Scholar 

  • Lahrtz F, Piali L, Spanaus KS, Seebach J, Fontana A (1998) Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 85:33–43

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin–angiotensin system—an endocrine and paracrine system. Endocrinology 144:2179–2183

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. Faseb J 19:617–619

    CAS  PubMed  Google Scholar 

  • Lucius R et al (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188:661–670

    Article  CAS  PubMed  Google Scholar 

  • Makino I, Shibata K, Ohgami Y, Fujiwara M, Furukawa T (1996) Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides 30:596–601

    Article  CAS  PubMed  Google Scholar 

  • Man S, Ubogu EE, Ransohoff RM (2007) Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 17:243–250

    Article  CAS  PubMed  Google Scholar 

  • Matthews DA, Cotman C, Lynch G (1976) An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res 115:1–21

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HH, Ladeby R, Drojdahl N, Peterson AC, Finsen B (2006) Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse. Glia 54:105–115

    Article  PubMed  Google Scholar 

  • Owens T, Bechmann I, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121

    Article  PubMed  Google Scholar 

  • Petty MA, Lo EH (2002) Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 68:311–323

    Article  CAS  PubMed  Google Scholar 

  • Platten M et al (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106:14948–14953

    Article  CAS  PubMed  Google Scholar 

  • Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood–brain barrier. Glia 36:145–155

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM et al (2002) Chemokine expression in the central nervous system of mice with a viral disease resembling multiple sclerosis: roles of CD4+ and CD8+ T cells and viral persistence. J Virol 76:2217–2224

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  Google Scholar 

  • Riminton SD et al (1998) Challenging cytokine redundancy: inflammatory cell movement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient, but not tumor necrosis factor-deficient, mice. J Exp Med 187:1517–1528

    Article  CAS  Google Scholar 

  • Sedgwick JD, Riminton DS, Cyster JG, Korner H (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 21:110–113

    Article  CAS  PubMed  Google Scholar 

  • Servant G, Dudley DT, Escher E, Guillemette G (1996) Analysis of the role of N-glycosylation in cell-surface expression and binding properties of angiotensin II type-2 receptor of rat pheochromocytoma cells. Biochem J 313(Pt 1):297–304

    CAS  PubMed  Google Scholar 

  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249

    Article  CAS  PubMed  Google Scholar 

  • Sumners C, Tang W, Zelezna B, Raizada MK (1991) Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci U S A 88:7567–7571

    Article  CAS  PubMed  Google Scholar 

  • Thone-Reineke C, Steckelings UM, Unger T (2006) Angiotensin receptor blockers and cerebral protection in stroke. J Hypertens Suppl 24:S115–S121

    Article  CAS  Google Scholar 

  • Toft-Hansen H et al (2006) Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 177:7242–7249

    CAS  PubMed  Google Scholar 

  • Toft-Hansen H, Babcock AA, Millward JM, Owens T (2007) Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system. J Neuroinflammation 4:24

    Article  PubMed  CAS  Google Scholar 

  • Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–3775

    CAS  PubMed  Google Scholar 

  • Tsutsumi K, Stromberg C, Viswanathan M, Saavedra JM (1991) Angiotensin-II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Walther T et al (2002) Ischemic injury in experimental stroke depends on angiotensin II. FASEB J 16:169–176

    Article  CAS  PubMed  Google Scholar 

  • Wirenfeldt M et al (2005) Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 82:507–514

    Article  CAS  PubMed  Google Scholar 

  • Wirenfeldt M et al (2007) Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 171:617–631

    Article  CAS  PubMed  Google Scholar 

  • Wosik K et al (2007) Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurosci 27:9032–9042

    Article  CAS  PubMed  Google Scholar 

  • Yan YP et al (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27:1213–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Tadashi Inagami and Amita Rachakonda (Vanderbilt University, Nashville, TN, funded by NIH research grant number HL58205) for generously providing us with AT2 KO tissue. We also thank Dina Dræby for assistance with animal breeding and colony management, and Jason Millward for help with qRT-PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Owens.

Additional information

Funding

The research was supported by grants to Dr. Trevor Owens from the Danish Agency for Science Technology and Innovation and from the Danish Multiple Sclerosis Society. Laila Füchtbauer was funded by a skolarstipendium from the Danish Agency for Science Technology and Innovation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füchtbauer, L., Toft-Hansen, H., Khorooshi, R. et al. Expression of Astrocytic Type 2 Angiotensin Receptor in Central Nervous System Inflammation Correlates With Blood–Brain Barrier Breakdown. J Mol Neurosci 42, 89–98 (2010). https://doi.org/10.1007/s12031-010-9371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9371-8

Keywords

Navigation