Skip to main content
Log in

Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Induced regulatory T cells (iTregs) are essential to maintain immunological tolerance, immune homeostasis and prevention of autoimmunity. Some studies suggest that glycogen synthase kinase 3β (GSK3β) is involved in the mouse iTreg differentiation; however, whether GSK3β inhibits or enhances iTreg differentiation is still a matter of controversy. To address this issue, we have utilized human naïve CD4+ T cells and investigated whether GSK3 activity changes during iTreg differentiation and whether altering GSK3 activity influences the development of iTregs and its suppressive function. As a constitutively activated kinase, during iTreg differentiation GSK3β became quickly deactivated (phosphorylated at serine 9), which is dependent on MAPK pathway rather than PI3-kinase/Akt pathway. Our results indicated that inhibition of GSK3β by specific inhibitors, SB216763 or TDZD-8, promoted the differentiation of iTreg and increased their suppressive activity. In contrast, overexpression of GSK3β significantly inhibited iTreg differentiation. Furthermore, GSK3β inhibition enhanced iTreg differentiation through the TGF-β/Smad3 pathway. Taken together, this study demonstrates that inhibition of GSK3β enhances human iTreg differentiation and its suppressive activity, and provides a rationale to target GSK3β as a novel immunotherapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.

    Article  CAS  PubMed  Google Scholar 

  3. Hilbrands R, Howie D, Cobbold S, et al. Regulatory T cells and transplantation tolerance. Immunotherapy. 2013;5(7):717–31.

    Article  CAS  PubMed  Google Scholar 

  4. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  5. Issa F, Hester J, Goto R, et al. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation. 2010;90(12):1321–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nadig SN, Wieckiewicz J, Wu DC, et al. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat Med. 2010;16(7):809–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kong N, Lan Q, Chen M, et al. Antigen-specific transforming growth factor beta-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance. Arthritis Rheum. 2012;64(8):2548–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Huang H, Ma Y, Dawicki W, et al. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. J Immunol. 2013;191(3):1136–43.

    Article  CAS  PubMed  Google Scholar 

  9. Karlsson F, Martinez NE, Gray L, et al. Therapeutic evaluation of ex vivo-generated versus natural regulatory T-cells in a mouse model of chronic gut inflammation. Inflamm Bowel Dis. 2013;19(11):2282–94.

    Article  PubMed  Google Scholar 

  10. Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010;31(1):24–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ding Y, Shen S, Lino AC, et al. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 2008;14(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  12. Graham JA, Fray M, de Haseth S, et al. Suppressive regulatory T cell activity is potentiated by glycogen synthase kinase 3{beta} inhibition. J Biol Chem. 2010;285(43):32852–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Beurel E, Yeh WI, Michalek SM, et al. Glycogen synthase kinase-3 is an early determinant in the differentiation of pathogenic Th17 cells. J Immunol. 2011;186(3):1391–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Beurel E, Kaidanovich-Beilin O, Yeh WI, et al. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3. J Immunol. 2013;190(10):5000–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fu R, Li J, Zhong H, et al. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3beta-related T regulatory cell insufficiency. PLoS One. 2014;9(3):e92912.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Xia Y, Rao J, Yao A, et al. Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3beta/NF-kappaB-mediated protective signaling in mice. Eur J Pharmacol. 2012;697(1–3):117–25.

    Article  CAS  PubMed  Google Scholar 

  17. Li MJ, Rossi JJ. Lentiviral vector delivery of recombinant small interfering RNA expression cassettes. Methods Enzymol. 2005;392:218–26.

    Article  CAS  PubMed  Google Scholar 

  18. Fang J, Hodivala-Dilke K, Johnson BD, et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood. 2005;106(8):2671–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kang Y, Chen CR, Massague J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003;11(4):915–26.

    Article  CAS  PubMed  Google Scholar 

  20. Gulen MF, Bulek K, Xiao H, et al. Inactivation of the enzyme GSK3alpha by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. Immunity. 2012;37(5):800–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006;79(4):173–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000;406(6791):86–90.

    Article  CAS  PubMed  Google Scholar 

  23. Varela AT, Simoes AM, Teodoro JS, et al. Indirubin-3’-oxime prevents hepatic I/R damage by inhibiting GSK-3beta and mitochondrial permeability transition. Mitochondrion. 2010;10(5):456–63.

    Article  CAS  PubMed  Google Scholar 

  24. Ren F, Duan Z, Cheng Q, et al. Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin-10-mediated immune regulatory mechanism. Hepatology. 2011;54(2):687–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Laurence A, Amarnath S, Mariotti J, et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity. 2012;37(2):209–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Betts BC, Veerapathran A, Pidala J, et al. STAT5 polarization promotes iTregs and suppresses human T-cell alloresponses while preserving CTL capacity. J Leukoc Biol. 2014;95(2):205–13.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pearl LH, Barford D. Regulation of protein kinases in insulin, growth factor and Wnt signalling. Curr Opin Struct Biol. 2002;12(6):761–7.

    Article  CAS  PubMed  Google Scholar 

  28. Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med. 2008;205(3):565–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sauer S, Bruno L, Hertweck A, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105(22):7797–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lu L, Wang J, Zhang F, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184(8):4295–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007;110(8):2983–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Meiler F, Zumkehr J, Klunker S, et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med. 2008;205(12):2887–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol. 2005;6(4):338–44.

    Article  Google Scholar 

  34. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9.

    Article  CAS  PubMed  Google Scholar 

  35. Tone Y, Furuuchi K, Kojima Y, et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008;181(4):2277–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3- control Smad3 protein stability and modulate TGF-signaling. Genes Dev. 2008;22(1):106–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhao YG, Wang Y, Guo Z, et al. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol. 2012;189(9):4417–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Li M (Zhongshan School of Medicine, China) for providing the human GSK3β plasmid. This work was supported by grants from the National Natural Science Foundation of China (No. 81373165 and No. 81273261) and Six Talents Peak in Jiangsu Province of China (2013-WSW-022).

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Zhu, Liyong Pu or Xuehao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12026_2015_8635_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 270 kb): Human CD4+ T cells were cultured in medium supplemented with SB216763 or TDZD-8 for 1 hour. Phospho-glycogen synthase(p-GS), GS, GSK3β, and GAPDH protein levels were analyzed by immunoblotting

12026_2015_8635_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 104 kb): Human CD4+ T cells were cultured in medium supplemented with SIS3 in the presence or absence of SB216763 for 1 hour. P-Smad3, Smad3 and GAPDH protein levels were analyzed by immunoblotting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhuo, H., Lu, Y. et al. Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function. Immunol Res 62, 60–70 (2015). https://doi.org/10.1007/s12026-015-8635-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8635-3

Keywords

Navigation