Skip to main content

Advertisement

Log in

Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

During thymocyte development bone marrow-derived precursors in the thymus undergo a series of differentiation steps to produce self-tolerant, mature T lymphocytes. The thymus contains two functionally distinct anatomical compartments, consisting of a centrally located medulla surrounded by the thymic cortex. These compartments in turn are comprised of two major cellular components: (1) the T lymphoid compartment of developing thymocytes and (2) the thymic stroma consisting mainly of thymic epithelial cells (TECs). These epithelial cells are further separated into cortical and medullary TECs (cTECs and mTECs) based on their localization within the thymic cortex or medulla respectively. Reciprocal interactions between thymocytes and epithelial cells are required for the development of both cellular components into a functional thymic organ. Thymocytes provide trophic factors for the development of a complex three-dimensional epithelial cell network, while epithelial cells regulate T cell development through expression and presentation of self-antigens on major histocompatibility molecules. Our work focuses on how thymic epithelial cells regulate T cell development and function and on elucidating the mechanisms of thymic epithelial cell differentiation. Here we review current knowledge and provide our own insight into the development, differentiation and antigen presenting properties of TECs. We focus specifically on how mTECs regulate T cell repertoire selection and central tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nitta T, et al. Thymic microenvironments for T-cell repertoire formation. Adv Immunol. 2008;99:59–94.

    PubMed  CAS  Google Scholar 

  2. Ritter MA, Boyd RL. Development in the thymus: it takes two to tango. Immunol Today. 1993;14(9):462–9.

    PubMed  CAS  Google Scholar 

  3. van Ewijk W, Shores EW, Singer A. Crosstalk in the mouse thymus. Immunol Today. 1994;15(5):214–7.

    PubMed  Google Scholar 

  4. Boehm T, et al. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med. 2003;198(5):757–69.

    PubMed  CAS  Google Scholar 

  5. Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 2001;1(1):31–40.

    PubMed  CAS  Google Scholar 

  6. Lind EF, et al. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med. 2001;194(2):127–34.

    PubMed  CAS  Google Scholar 

  7. Petrie HT, et al. Precursor thymocyte proliferation and differentiation are controlled by signals unrelated to the pre-TCR. J Immunol. 2000;165(6):3094–8.

    PubMed  CAS  Google Scholar 

  8. Mombaerts P, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

    PubMed  CAS  Google Scholar 

  9. Spanopoulou E, et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 1994;8(9):1030–42.

    PubMed  CAS  Google Scholar 

  10. Nehls M, et al. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature. 1994;372(6501):103–7.

    PubMed  CAS  Google Scholar 

  11. Bhandoola A, et al. Early T lineage progenitors: new insights, but old questions remain. J Immunol. 2003;171(11):5653–8.

    PubMed  CAS  Google Scholar 

  12. Benz C, et al. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development. J Exp Med. 2008;205(5):1187–99.

    PubMed  CAS  Google Scholar 

  13. Saint-Ruf C, et al. Analysis and expression of a cloned pre-T cell receptor gene. Science. 1994;266(5188):1208–12.

    PubMed  CAS  Google Scholar 

  14. Shinkai Y, et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science. 1993;259(5096):822–5.

    PubMed  CAS  Google Scholar 

  15. Ashton-Rickardt PG, et al. Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell. 1993;73(5):1041–9.

    PubMed  CAS  Google Scholar 

  16. Takahama Y, et al. Positive selection of CD4+ T cells by TCR ligation without aggregation even in the absence of MHC. Nature. 1994;371(6492):67–70.

    PubMed  CAS  Google Scholar 

  17. Allen PM. Peptides in positive and negative selection: a delicate balance. Cell. 1994;76(4):593–6.

    PubMed  CAS  Google Scholar 

  18. Kyewski B, Derbinski J. Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004;4(9):688–98.

    PubMed  CAS  Google Scholar 

  19. Kyewski B, et al. Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol. 2002;23(7):364–71.

    PubMed  CAS  Google Scholar 

  20. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606.

    PubMed  CAS  Google Scholar 

  21. Klein L, et al. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9(12):833–44.

    PubMed  CAS  Google Scholar 

  22. Takahama Y, et al. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol. 2010;22(5):287–93.

    PubMed  CAS  Google Scholar 

  23. Livak F, et al. Characterization of TCR gene rearrangements during adult murine T cell development. J Immunol. 1999;162(5):2575–80.

    PubMed  CAS  Google Scholar 

  24. Krangel MS. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009;21(2):133–9.

    PubMed  CAS  Google Scholar 

  25. Kruisbeek AM, et al. Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol Today. 2000;21(12):637–44.

    PubMed  CAS  Google Scholar 

  26. Michie AM, Zuniga-Pflucker JC. Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol. 2002;14(5):311–23.

    PubMed  CAS  Google Scholar 

  27. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76.

    PubMed  CAS  Google Scholar 

  28. Carpenter AC, Bosselut R. Decision checkpoints in the thymus. Nat Immunol. 2010;11(8):666–73.

    PubMed  CAS  Google Scholar 

  29. Jordan MS, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6.

    PubMed  CAS  Google Scholar 

  30. Apostolou I, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. 2002;3(8):756–63.

    PubMed  CAS  Google Scholar 

  31. Aschenbrenner K, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351–8.

    PubMed  CAS  Google Scholar 

  32. Ignatowicz L, Kappler J, Marrack P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell. 1996;84(4):521–9.

    PubMed  CAS  Google Scholar 

  33. Fukui Y, et al. Positive and negative CD4+ thymocyte selection by a single MHC class II/peptide ligand affected by its expression level in the thymus. Immunity. 1997;6(4):401–10.

    PubMed  CAS  Google Scholar 

  34. Wang B, et al. A single peptide-MHC complex positively selects a diverse and specific CD8 T cell repertoire. Science. 2009;326(5954):871–4.

    PubMed  CAS  Google Scholar 

  35. Oono T, et al. Organ-specific autoimmunity in mice whose T cell repertoire is shaped by a single antigenic peptide. J Clin Invest. 2001;108(11):1589–96.

    PubMed  CAS  Google Scholar 

  36. Murata S, Takahama Y, Tanaka K. Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol. 2008;20(2):192–6.

    PubMed  CAS  Google Scholar 

  37. Murata S, et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science. 2007;316(5829):1349–53.

    PubMed  CAS  Google Scholar 

  38. Kloetzel PM. The proteasome and MHC class I antigen processing. Biochim Biophys Acta. 2004;1695(1–3):225–33.

    PubMed  CAS  Google Scholar 

  39. Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol. 2004;16(1):76–81.

    PubMed  CAS  Google Scholar 

  40. Tanaka K, Kasahara M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev. 1998;163:161–76.

    PubMed  CAS  Google Scholar 

  41. Honey K, Rudensky AY. Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol. 2003;3(6):472–82.

    PubMed  CAS  Google Scholar 

  42. Nakagawa T, et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science. 1998;280(5362):450–3.

    PubMed  CAS  Google Scholar 

  43. Honey K, et al. Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med. 2002;195(10):1349–58.

    PubMed  CAS  Google Scholar 

  44. Bowlus CL, et al. Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol. 1999;196(2):80–6.

    PubMed  CAS  Google Scholar 

  45. Carrier A, et al. Differential gene expression in CD3epsilon- and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation. Immunogenetics. 1999;50(5–6):255–70.

    PubMed  CAS  Google Scholar 

  46. Viken MK, et al. Reproducible association with type 1 diabetes in the extended class I region of the major histocompatibility complex. Genes Immun. 2009;10(4):323–33.

    PubMed  CAS  Google Scholar 

  47. Viret C, et al. Thymus-specific serine protease contributes to the diversification of the functional endogenous CD4 T cell receptor repertoire. J Exp Med. 2011;208(1):3–11.

    PubMed  CAS  Google Scholar 

  48. Viret C, et al. Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. J Clin Invest. 2011;121(5):1810–21.

    PubMed  CAS  Google Scholar 

  49. Gommeaux J, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol. 2009;39(4):956–64.

    PubMed  CAS  Google Scholar 

  50. Nedjic J, et al. Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Curr Opin Immunol. 2009;21(1):92–7.

    PubMed  CAS  Google Scholar 

  51. Munz C. Enhancing immunity through autophagy. Annu Rev Immunol. 2009;27:423–49.

    PubMed  CAS  Google Scholar 

  52. Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009;10(5):461–70.

    PubMed  CAS  Google Scholar 

  53. Wong AS, Cheung ZH, Ip NY. Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta. 2011;1812(11):1490–7.

    PubMed  CAS  Google Scholar 

  54. Nedjic J, Aichinger M, Klein L. Autophagy and T cell education in the thymus: eat yourself to know yourself. Cell Cycle. 2008;7(23):3625–8.

    PubMed  CAS  Google Scholar 

  55. Nedjic J, Aichinger M, Klein L. A novel role for autophagy in T cell education. Autophagy. 2008;4(8):1090–2.

    PubMed  Google Scholar 

  56. Nedjic J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455(7211):396–400.

    PubMed  CAS  Google Scholar 

  57. Klein L, et al. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol. 2011;32(5):188–93.

    PubMed  CAS  Google Scholar 

  58. Derbinski J, Kyewski B. How thymic antigen presenting cells sample the body’s self-antigens. Curr Opin Immunol. 2010;22(5):592–600.

    PubMed  CAS  Google Scholar 

  59. Tykocinski LO, Sinemus A, Kyewski B. The thymus medulla slowly yields its secrets. Ann N Y Acad Sci. 2008;1143:105–22.

    PubMed  CAS  Google Scholar 

  60. Gotter J, et al. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med. 2004;199(2):155–66.

    PubMed  CAS  Google Scholar 

  61. Klein L, Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol. 2000;12(2):179–86.

    PubMed  CAS  Google Scholar 

  62. Mathis D, Benoist C. Back to central tolerance. Immunity. 2004;20(5):509–16.

    PubMed  CAS  Google Scholar 

  63. McCaughtry TM, Wilken MS, Hogquist KA. Thymic emigration revisited. J Exp Med. 2007;204(11):2513–20.

    PubMed  CAS  Google Scholar 

  64. Klein L, Kyewski B. “Promiscuous” expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity? J Mol Med (Berl). 2000;78(9):483–94.

    CAS  Google Scholar 

  65. Klein L, et al. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J Exp Med. 1998;188(1):5–16.

    PubMed  CAS  Google Scholar 

  66. Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.

    PubMed  CAS  Google Scholar 

  67. Derbinski J, et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001;2(11):1032–9.

    PubMed  CAS  Google Scholar 

  68. Derbinski J, et al. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A. 2008;105(2):657–62.

    PubMed  CAS  Google Scholar 

  69. Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol. 2007;7(8):645–50.

    PubMed  CAS  Google Scholar 

  70. Mathis D, Benoist C. Aire. Annu Rev Immunol. 2009;27:287–312.

    CAS  Google Scholar 

  71. Kyewski B, Peterson P. Aire, master of many trades. Cell. 2010;140(1):24–6.

    PubMed  CAS  Google Scholar 

  72. Derbinski J, et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med. 2005;202(1):33–45.

    PubMed  CAS  Google Scholar 

  73. Org T, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 2008;9(4):370–6.

    PubMed  CAS  Google Scholar 

  74. Koh AS, et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A. 2008;105(41):15878–83.

    PubMed  CAS  Google Scholar 

  75. Abramson J, et al. Aire’s partners in the molecular control of immunological tolerance. Cell. 2010;140(1):123–35.

    PubMed  CAS  Google Scholar 

  76. Fan Y, et al. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 2009;28(18):2812–24.

    PubMed  CAS  Google Scholar 

  77. Giraud M, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature. 2007;448(7156):934–7.

    PubMed  CAS  Google Scholar 

  78. Anderson MS, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity. 2005;23(2):227–39.

    PubMed  CAS  Google Scholar 

  79. Gavanescu I, et al. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc Natl Acad Sci U S A. 2007;104(11):4583–7.

    PubMed  CAS  Google Scholar 

  80. Nagamine K, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8.

    PubMed  CAS  Google Scholar 

  81. Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med. 1999;31(2):111–6.

    PubMed  CAS  Google Scholar 

  82. Rossi SW, et al. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature. 2006;441(7096):988–91.

    PubMed  CAS  Google Scholar 

  83. Bleul CC, et al. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature. 2006;441(7096):992–6.

    PubMed  CAS  Google Scholar 

  84. Irla M, Hollander G, Reith W. Control of central self-tolerance induction by autoreactive CD4+ thymocytes. Trends Immunol. 2010;31(2):71–9.

    PubMed  CAS  Google Scholar 

  85. Rossi SW, et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood. 2007;109(9):3803–11.

    PubMed  CAS  Google Scholar 

  86. Gillard GO, Farr AG. Contrasting models of promiscuous gene expression by thymic epithelium. J Exp Med. 2005;202(1):15–9.

    PubMed  CAS  Google Scholar 

  87. Gray D, et al. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med. 2007;204(11):2521–8.

    PubMed  CAS  Google Scholar 

  88. Gabler J, Arnold J, Kyewski B. Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol. 2007;37(12):3363–72.

    PubMed  Google Scholar 

  89. Klug DB, et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci U S A. 1998;95(20):11822–7.

    PubMed  CAS  Google Scholar 

  90. Su DM, et al. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol. 2003;4(11):1128–35.

    PubMed  CAS  Google Scholar 

  91. Blackburn CC, et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A. 1996;93(12):5742–6.

    PubMed  CAS  Google Scholar 

  92. Corbeaux T, et al. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A. 2010;107(38):16613–8.

    PubMed  CAS  Google Scholar 

  93. Manley NR, Condie BG. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci. 2010;92:103–20.

    PubMed  CAS  Google Scholar 

  94. Chen L, Xiao S, Manley NR. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood. 2009;113(3):567–74.

    PubMed  CAS  Google Scholar 

  95. Akiyama T, et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 2008;29(3):423–37.

    PubMed  CAS  Google Scholar 

  96. Hikosaka Y, et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 2008;29(3):438–50.

    PubMed  CAS  Google Scholar 

  97. Akiyama T, et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science. 2005;308(5719):248–51.

    PubMed  CAS  Google Scholar 

  98. Irla M, et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity. 2008;29(3):451–63.

    PubMed  CAS  Google Scholar 

  99. Venanzi ES, et al. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol. 2007;179(9):5693–700.

    PubMed  CAS  Google Scholar 

  100. Alexandropoulos K, Baltimore D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 1996;10(11):1341–55.

    PubMed  CAS  Google Scholar 

  101. Ishino M, et al. Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. Oncogene. 1995;11(11):2331–8.

    PubMed  CAS  Google Scholar 

  102. Alexandropoulos K, et al. Sin: good or bad? A T lymphocyte perspective. Immunol Rev. 2003;192:181–95.

    PubMed  CAS  Google Scholar 

  103. Danzl NM, Donlin LT, Alexandropoulos K. Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin. J Exp Med. 2010;207(5):999–1013.

    PubMed  CAS  Google Scholar 

  104. Kurts C, et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med. 1996;184(3):923–30.

    PubMed  CAS  Google Scholar 

  105. Harbers SO, et al. Antibody-enhanced cross-presentation of self antigen breaks T cell tolerance. J Clin Invest. 2007;117(5):1361–9.

    PubMed  CAS  Google Scholar 

  106. Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res. 2004;91:69–136.

    PubMed  CAS  Google Scholar 

  107. Erickson M, et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood. 2002;100(9):3269–78.

    PubMed  CAS  Google Scholar 

  108. auf demKeller U, et al. Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur J Cell Biol. 2004; 83(11–12): 607–12.

    Google Scholar 

  109. Alexandropoulos K, Cheng G, Baltimore D. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci U S A. 1995;92(8):3110–4.

    PubMed  CAS  Google Scholar 

  110. Klint P, et al. Contribution of Src and Ras pathways in FGF-2 induced endothelial cell differentiation. Oncogene. 1999;18(22):3354–64.

    PubMed  CAS  Google Scholar 

  111. Boilly B, et al. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev. 2000;11(4):295–302.

    PubMed  CAS  Google Scholar 

  112. Roux E, et al. Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood. 2000;96(6):2299–303.

    PubMed  CAS  Google Scholar 

  113. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7(5):340–52.

    PubMed  CAS  Google Scholar 

  114. van den Brink MR, et al. Graft-versus-host-disease-associated thymic damage results in the appearance of T cell clones with anti-host reactivity. Transplantation. 2000;69(3):446–9.

    PubMed  Google Scholar 

  115. Alpdogan O, et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood. 2006;107(6):2453–60.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Yongwon Choi (University of Pennsylvania) for his kind gift of recombinant RANKL. K.A was supported by the National Institute of Allergy and Infectious Disease (NIAID) grants RO1 AI49387-01; R56 AI049387-05; R01 AI068963-01. N.M.D was supported by Columbia University’s Immunology Program training grant T32 AI007525-10 and by NIAID grant R01 AI068963-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina Alexandropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandropoulos, K., Danzl, N.M. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res 54, 177–190 (2012). https://doi.org/10.1007/s12026-012-8301-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8301-y

Keywords

Navigation