Skip to main content

Advertisement

Log in

Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Osteoporosis is increasing in prevalence and importance as society’s age, with the clinical consequence of fractures of the hip, spine, and upper extremity, leading to impaired quality of life, loss of function and independence, and increased morbidity and mortality. A major risk factor for osteoporosis is older age, and cardiovascular diseases also share this risk factor; therefore, osteoporosis and cardiovascular disease often coexist and share risk factors. Medications used for the treatment of cardiovascular diseases, in particular antihypertensive drugs, have been shown in a variety of studies of varying designs to modulate bone health in both a positive or negative manner. In this article, we reviewed the pharmacology, potential mechanisms, and possible effects on bone mineral density and fracture risk of commonly prescribed antihypertensive medications, including thiazide and non-thiazide diuretics, beta-blockers, calcium channel blockers, renin–angiotensin–aldosterone system agents, and nitrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Parthan, M. Kruse, N. Yurgin, J. Huang, H.N. Viswanathan, D. Taylor, Cost effectiveness of denosumab versus oral bisphosphonates for postmenopausal osteoporosis in the US. Appl. Health Econ. Health Policy 5, 485–497 (2013)

    Article  Google Scholar 

  2. S.H. Choi, J.H. An, S. Lim, B.K. Koo, S.E. Park, H.J. Chang, S.I. Choi, Y.J. Park, K.S. Park, H.C. Jang, C.S. Shin, Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin. Endocrinol. (Oxf). 5, 644–651 (2009)

    Article  Google Scholar 

  3. K. Nishio, S. Mukae, S. Aoki, S. Itoh, N. Konno, K. Ozawa, R. Satoh, T. Katagiri, Congestive heart failure is associated with the rate of bone loss. J. Intern. Med. 253, 439–446 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. P. von der Recke, M.A. Hansen, C. Hassager, The association between low bone mass at the menopause and cardiovascular mortality. Am. J. Med. 106, 273–278 (1999)

    Article  PubMed  Google Scholar 

  5. L.M. Banks, B. Lees, J.E. MacSweeney, J.C. Stevenson, Effect of degenerative spinal and aortic calcification on bone density measurements in post-menopausal women: links between osteoporosis and cardiovascular disease? Eur. J. Clin. Invest. 24, 813–817 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. A. Aoki, M. Murata, T. Asano, A. Ikoma, M. Sasaki, T. Saito, T. Otani, S. Jinbo, N. Ikeda, M. Kawakami, S.E. Ishikawa, Association of serum osteoprotegerin with vascular calcification in patients with type 2 diabetes. Cardiovasc. Diabetol. 12, 11 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. S. Yang, N.D. Nguyen, J.R. Center, J.A. Eisman, T.V. Nguyen. Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int. (2013). doi: 10.1007/s00198-013-2457-8

  8. F.P. Cappuccio, E. Meilahn, J.M. Zmuda, J.A. Cauley, High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet 354, 971–975 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. S.R. Majumdar, J.A. Ezekowitz, L.M. Lix, W.D. Leslie, Heart failure is a clinically and densitometrically independent risk factor for osteoporotic fractures: population-based cohort study of 45,509 subjects. J. Clin. Endocrinol. Metab. 97, 1179–1186 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. X. Girerd, O. Hanon, B. Pannier, B. Vaïsse, J.J. Mourad, Trends in the use of antihypertensive drugs in France from 2002 to 2012: FLAHS surveys. Ann. Cardiol. Angeiol. 2, 210–214 (2013)

    Article  Google Scholar 

  11. Q. Gu, V.L. Burt, C.F. Dillon, S. Yoon, Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health and Nutrition Examination Survey, 2001 to 2010. Circulation 126, 2105–2114 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. N. Sreedharan, P.G. Rao, N.R. Rau, P.R. Shankar, Antihypertensive prescribing preferences in three South Indian Hospitals: cost analysis, physicians perspectives and emerging trends. Int. J. Clin. Pharmacol. Ther. 49, 277–285 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. S. Middler, C.Y. Pak, F. Murad, F.C. Bartter, Thiazide diuretics and calcium metabolism. Metabolism 22, 139–146 (1973)

    Article  CAS  PubMed  Google Scholar 

  14. C. Bazzini, V. Vezzoli, C. Sironi et al., Thiazide-sensitive NaCl-cotransporter in the intestine: possible role of hydrochlorothiazide in the intestinal Ca2+ uptake. J. Biol. Chem. 280, 19902–19910 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. N. Obermüller, P. Bernstein, H. Velázquez, R. Reilly, D. Moser, D.H. Ellison, S. Bachmann, Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269, 900–910 (1995)

    Google Scholar 

  16. X.Y. Wang, S. Masilamani, J. Nielsen, T.H. Kwon, H.L. Brooks, S. Nielsen, M.A. Kneppe, The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon. J. Clin. Invest. 108, 215–222 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. M.M. Dvorak, C. De Joussineau, D.H. Carter, Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J. Am. Soc. Nephrol. 18, 2509–2516 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. E.L. Barry, F.A. Gesek, M.R. Kaplan, S.C. Hebert, P.A. Friedman, Expression of the sodium-chloride cotransporter in osteoblast-like cells: effect of thiazide diuretics. Am. J. Physiol. 272, C109–C116 (1997)

    CAS  PubMed  Google Scholar 

  19. R. Aubin, P. Menard, D. Lajeunesse, Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int. 50, 1476–1482 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. L. Rejnmark, P. Vestergaard, A.R. Pedersen, L. Heickendorff, F. Andreasen, L. Mosekilde, Dose-effect relations of loop- and thiazide-diuretics on calcium homeostasis: a randomized, double-blinded Latin-square multiple cross-over study in postmenopausal osteopenic women. Eur. J. Clin. Invest. 33, 41–50 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. L. Rejnmark, P. Vestergaard, L. Heickendorff, F. Andreasen, L. Mosekilde, Effects of thiazide- and loop-diuretics, alone or in combination, on calcitropic hormones and biochemical bone markers: a randomized controlled study. J. Intern. Med. 250, 144–153 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. R. Wasnich, J. Davis, P. Ross, J. Vogel, Effect of thiazide on rates of bone mineral loss: a longitudinal study. BMJ 301, 1303–1305 (1990)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. R.D. Wasnich, J.W. Davis, Y.F. He, H. Petrovich, P.D. Ross, A randomized, double-masked, placebo-controlled trial of chlorthalidone and bone loss in elderly women. Osteoporos. Int. 5, 247–251 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. G. Sigurdsson, L. Franzson, Increased bone mineral density in a population-based group of 70-year-old women on thiazide diuretics, independent of parathyroid hormone levels. J. Intern. Med. 250, 51–56 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. K. Aung, T. Htay, Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst. Rev. 10, CD005185 (2011)

    PubMed  Google Scholar 

  26. C. Plata, P. Meade, N. Vazquez, S.C. Hebert, G. Gamba, Functional properties of the apical Na+-K+-2Cl- cotransporter isoforms. J. Biol. Chem. 277, 11004–11012 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. J.M. Chen, B.S. Heran, J.M. Wright, Blood pressure lowering efficacy of diuretics as second-line therapy for primary hypertension. Cochrane Database Syst. Rev. 4, CD007187 (2009)

    PubMed  Google Scholar 

  28. L. Rejnmark, P. Vestergaard, L. Heickendorff, F. Andreasen, L. Mosekilde, Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J. Intern. Med. 257, 176–184 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. J. Elmgreen, L. Tougaard, A. Leth, M.S. Christensen, Elevated serum parathyroid hormone concentration during treatment with high ceiling diuretics. Eur. J. Clin. Pharmacol. 18, 363–364 (1980)

    Article  CAS  PubMed  Google Scholar 

  30. L.S. Lim, H.A. Fink, T. Blackwell, B.C. Taylor, K.E. Ensrud, Loop diuretic use and rates of hip bone loss and risk of falls and fractures in older women. J. Am. Geriatr. Soc. 57, 855–862 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  31. L.S. Lim, H.A. Fink, M.A. Kuskowski, B.C. Taylor, J.T. Schousboe, K.E. Ensrud, Loop diuretic use and increased rates of hip bone loss in older men: the osteoporotic fractures in men study. Arch. Intern. Med. 168, 735–740 (2008)

    Article  PubMed  Google Scholar 

  32. L. Rejnmark, P. Vestergaard, L. Heickendorff, F. Andreasen, L. Mosekilde, Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J. Bone Miner. Res. 21, 163–170 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. S. Arampatzis, L.M. Gaetcke, G.C. Funk, C. Schwarz, M. Mohaupt, H. Zimmermann, A.K. Exadaktylos, G. Lindner, Diuretic-induced hyponatremia and osteoporotic fractures in patients admitted to the emergency department. Maturitas. 75, 81–86 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. D.H. Solomon, H. Mogun, K. Garneau, M.A. Fischer, Risk of fractures in older adults using antihypertensive medications. J. Bone Miner. Res. 26, 1561–1567 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. L.J. Min, M. Mogi, J.M. Li, J. Iwanami, M. Iwai, M. Horiuchi, Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ. Res. 97, 434–442 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. P.H. Law, Y. Sun, S.K. Bhattacharya, V.S. Chhokar, K.T. Weber, Diuretics and bone loss in rats with aldosteronism. J. Am. Coll. Cardiol. 46, 142–146 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. A.L. Runyan, V.S. Chhokar, Y. Sun, S.K. Bhattacharya, J.W. Runyan, K.T. Weber, Bone loss in rats with aldosteronism. Am. J. Med. Sci. 330, 1–7 (2005)

    Article  PubMed  Google Scholar 

  38. A.S. Salcuni, S. Palmieri, V. Carnevale, V. Morelli, C. Battista, V. Guarnieri, G. Guglielmi, G. Desina, C. Eller-Vainicher, P. Beck-Peccoz, A. Scillitani, I. Chiodini, Bone involvement in aldosteronism. J. Bone Miner Res. 27, 2217–2222 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. L. Ceccoli, V. Ronconi, L. Giovannini, M. Marcheggiani, F. Turchi, M. Boscaro, G. Giacchetti, Bone health and aldosterone excess. Osteoporos Int. 24(11), 2801–2807 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. L.D. Carbone, J.D. Cross, S.H. Raza, A.J. Bush, R.J. Sepanski, S. Dhawan, B.Q. Khan, M. Gupta, K. Ahmad, R.N. Khouzam, D.A. Dishmon, J.P. Nesheiwat, M.A. Hajjar, W.A. Chishti, W. Nasser, M. Khan, C.R. Womack, T. Cho, A.R. Haskin, K.T. Weber, Fracture risk in men with congestive heart failure risk reduction with spironolactone. J. Am. Coll. Cardiol. 52, 135–138 (2008)

    Article  PubMed  Google Scholar 

  41. O.E. Brodde, M.C. Michel, X.L. Wang, H.R. Zerkowski, Chronic beta-adrenoceptor antagonist treatment modulates human cardiac and vascular beta-adrenoceptor density in a subtype-selective fashion. J. Hypertens. Suppl. 6, S497–S500 (1988)

    Article  CAS  PubMed  Google Scholar 

  42. G. Engel, Subclasses of beta-adrenoceptors–a quantitative estimation of beta 1- and beta 2- adrenoceptors in guinea pig and human lung. Postgrad. Med. J. 57, 77–83 (1981)

    Article  CAS  PubMed  Google Scholar 

  43. S. Krief, F. Lönnqvist, S. Raimbault, B. Baude, A. Van Spronsen, P. Arner, A.D. Strosberg, D. Ricquier, L.J. Emorine, Tissue distribution of beta 3-adrenergic receptor mRNA in man. J. Clin. Invest. 91, 344–349 (1993)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. R.E. Moore, C.K. Smith II, C.S. Bailey, E.F. Voelkel, A.H. Tashjian Jr., Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 23, 301–315 (1993)

    Article  CAS  PubMed  Google Scholar 

  45. F.J. Conway, J.D. Fitzgerald, J. McAinsh, D.J. Rowlands, W.T. Simpson, Human pharmacokinetic and pharmacodynamic studies on the atenolol (ICI 66,082), a new cardioselective beta-adrenoceptor blocking drug. Br. J. Clin. Pharmacol. 3, 267–272 (1976)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. A. Togari, M. Arai, Pharmacological topics of bone metabolism: the physiological function of the sympathetic nervous system in modulating bone resorption. J. Pharmacol. Sci. 106, 542–546 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. A. Togari, M. Arai, A. Kondo, The role of the sympathetic nervous system in controlling bone metabolism. Exp. Opin. Ther. Targets. 9, 931–940 (2005)

    Article  CAS  Google Scholar 

  48. S.J. Aitken, E. Landao-Bassonga, S.H. Ralston, A.I. Idris, Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch. Biochem. Biophys. 482, 96–103 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. A. Togari, Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc. Res. Tech. 58, 77–84 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. E.L. Hill, R. Turner, R. Elde, Effects of neonatal sympathectomy and capsaicin treatment on bone remodeling in rats. Neuroscience 44, 747–755 (1991)

    Article  CAS  PubMed  Google Scholar 

  51. H.S. Sandhu, A. Kwong-Hing, M.S. Herskovits, I.J. Singh, The early effects of surgical sympathectomy on bone resorption in the rat incisor socket. Arch. Oral Biol. 35, 1003–1007 (1990)

    Article  CAS  PubMed  Google Scholar 

  52. H.S. Sandhu, M.S. Herskovits, I.J. Singh, Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat. Rec. 219, 32–38 (1987)

    Article  CAS  PubMed  Google Scholar 

  53. H.H. Huang, T.C. Brennan, M.M. Muir, R.S. Mason, Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J. Cell. Physiol. 220, 267–275 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. W.F. Rodrigues, M.F. Madeira, T.A. da Silva, J.T. Clemente-Napimoga, C.B. Miguel, V.J. Dias-da-Silva, O. Barbosa-Neto, A.H. Lopes, M.H. Napimoga, Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br. J. Pharmacol. 165, 2140–2151 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. S. Yang, N.D. Nguyen, J.R. Center, J.A. Eisman, T.V. Nguyen, Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 48, 451–455 (2011)

    Article  CAS  PubMed  Google Scholar 

  56. H.J. Song, J. Lee, Y.J. Kim, S.Y. Jung, H.J. Kim, N.K. Choi, B.J. Park, β1 selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 51, 1008–1015 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. S. Yang, N.D. Nguyen, J.A. Eisman, T.V. Nguyen, Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 51, 969–974 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. K.A. Toulis, K. Hemming, S. Stergianos, K. Nirantharakumar, J.P. Bilezikian, β-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. (2013). doi:10.1007/s00198-013-2498-z

  59. R. Hatton, M. Stimpel, T.J. Chambers, Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J. Endocrinol. 152, 5–10 (1997)

    Article  CAS  PubMed  Google Scholar 

  60. H. Nakagami, M.K. Osako, R. Morishita, Potential effect of angiotensin II receptor blockade in adipose tissue and bone. Curr. Pharm. Des. 19, 3049–3053 (2013)

    Article  CAS  PubMed  Google Scholar 

  61. H. Shimizu, H. Nakagami, M.K. Osako, F. Nakagami, Y. Kunugiza, T. Tomita, H. Yoshikawa, H. Rakugi, T. Ogihara, R. Morishita, Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens. Res. 32, 786–790 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. H. Shimizu, H. Nakagami, M.K. Osako, R. Hanayama, Y. Kunugiza, T. Kizawa, T. Tomita, H. Yoshikawa, T. Ogihara, R. Morishita, Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 22, 2465–2475 (2008)

    Article  CAS  PubMed  Google Scholar 

  63. H. Nakagami, R. Morishita, Hormones and osteoporosis update. Effect of angiotensin II on bone metabolism. Clin. Calcium. 19, 997–1002 (2009)

    CAS  PubMed  Google Scholar 

  64. L. Ma, J.L. Ji, H. Ji, X. Yu, L.J. Ding, K. Liu, Y.Q. Li, Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone 47, 5–11 (2010)

    Article  CAS  PubMed  Google Scholar 

  65. A. García-Testal, A. Monzó, G. Rabanaque, A. González, A. Romeu, Evolution of the bone mass of hypertense menopausal women in treatment with fosinopril. Med. Clin. (Barc). 127, 692–694 (2006)

    Article  PubMed  Google Scholar 

  66. H. Lynn, T. Kwok, S.Y. Wong, J. Woo, P.C. Leung, Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 38, 584–588 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. T. Kwok, J. Leung, Y.F. Zhang, D. Bauer, K.E. Ensrud, E. Barrett-Connor, P.C. Leung, Osteoporotic Fractures in Men (MrOS) Research Group. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos. Int. 23, 2159–2167 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. L. Rejnmark, P. Vestergaard, L. Mosekilde, Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J. Hypertens. 24, 581–589 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. M. Wiens, M. Etminan, S.S. Gill, B. Takkouche, Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J. Intern. Med. 260, 350–362 (2006)

    Article  CAS  PubMed  Google Scholar 

  70. N. Himori, N. Taira, Differential effects of the calcium-antagonistic vasodilators, nifedipine and verapamil, on the tracheal musculature and vasculature of the dog. Br. J. Pharmacol. 68, 595–597 (1980)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. K.L. Schulte, E. Laber, W.A. Meyer-Sabellek, A. Distler, R. Gotzen, Specific alpha-adrenoceptor-mediated vasoconstriction in human veins and interaction with the calcium entry blockers nifedipine and diltiazem. J. Hypertens. Suppl. 3, S239–S241 (1985)

    Article  CAS  PubMed  Google Scholar 

  72. A.E. Minocherhomjee, B.D. Roufogalis, Antagonism of calmodulin and phosphodiesterase by nifedipine and related calcium entry blockers. Cell Calcium 5, 57–63 (1984)

    Article  CAS  PubMed  Google Scholar 

  73. H.J. Kramer, K. Glänzer, T. Freitag, J. Schönfeld, M. Sorger, H. Schlebusch, R. Düsing, F. Krück, Studies on the role of sodium- and potassium-activated adenosine triphosphatase inhibition in the pathogenesis of human hypertension. Changes in vascular and cardiac function following inhibition of the sodium pump in normotensive subjects and effects of calcium entry blockade. Klin Wochenschr. 63, 32–36 (1985)

    Article  CAS  PubMed  Google Scholar 

  74. D.C. Warltier, H.F. Hardman, H.L. Brooks, G.J. Gross, Transmural gradient of coronary blood flow following dihydropyridine calcium antagonists and other vasodilator drugs. Basic Res. Cardiol. 78, 644–653 (1983)

    Article  CAS  PubMed  Google Scholar 

  75. T. Hedner, Calcium channel blockers: spectrum of side effects and drug interactions. Acta Pharmacol. Toxicol. (Copenh). 58(Suppl 2), 119–130 (1986)

    CAS  PubMed  Google Scholar 

  76. T. Kameda, H. Mano, Y. Yamada, H. Takai, N. Amizuka, M. Kobori, N. Izumi, H. Kawashima, H. Ozawa, K. Ikeda, A. Kameda, Y. Hakeda, M. Kumegawa, Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem. Biophys. Res. Commun. 245, 419–422 (1998)

    Article  CAS  PubMed  Google Scholar 

  77. N. Kosaka, M. Uchii, Effect of benidipine hydrochloride, a dihydropyridine-type calcium antagonist, on the function of mouse osteoblastic cells. Calcif. Tissue Int. 62, 554–556 (1998)

    Article  CAS  PubMed  Google Scholar 

  78. Z. Halici, B. Borekci, Y. Ozdemir, E. Cadirci, H. Suleyman, Protective effects of amlodipine and lacidipine on ovariectomy-induced bone loss in rats. Eur. J. Pharmacol. 579, 241–245 (2008)

    Article  CAS  PubMed  Google Scholar 

  79. I. Gradosova, H. Zivna, V. Palicka, S. Hubena, K. Svejkovska, P. Zivny, Protective effect of amlodipine on rat bone tissue after orchidectomy. Pharmacology 89, 37–43 (2012)

    Article  CAS  PubMed  Google Scholar 

  80. K. Ushijima, Y. Liu, T. Maekawa, E. Ishikawa, Y. Motosugi, H. Ando, S. Tsuruoka, A. Fujimura, Protective effect of amlodipine against osteoporosis in stroke-prone spontaneously hypertensive rats. Eur. J. Pharmacol. 635, 227–230 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. S.A. Ay, M. Karaman, M. Cakar, S. Balta, E. Arslan, F. Bulucu, S. Demirbas, T. Celik, M.I. Naharci, S. Demirkol, O. Kurt, E. Bozoglu, Amlodipine increases vitamin D levels more than valsartan in newly diagnosed hypertensive patients: pointing to an additional effect on bone metabolism or a novel marker of inflammation? Ren. Fail. 35, 691–696 (2013)

    Article  CAS  PubMed  Google Scholar 

  82. S. Zacharieva, R. Shigarminova, E. Nachev, Z. Kamenov, I. Atanassova, M. Orbetzova, A. Stoynev, N. Doncheva, A.M. Borissova, Effect of amlodipine and hormone replacement therapy on blood pressure and bone markers in menopause. Methods Find. Exp. Clin. Pharmacol. 25, 209–213 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. I. Zofková, R.L. Kancheva, The effect of nifedipine on serum parathyroid hormone and calcitonin in postmenopausal women. Life Sci. 57, 1087–1096 (1995)

    Article  PubMed  Google Scholar 

  84. M.M. Albers, W. Johnson, V. Vivian, R.D. Jackson, Chronic use of the calcium channel blocker nifedipine has no significant effect on bone metabolism in men. Bone 12, 39–42 (1991)

    Article  CAS  PubMed  Google Scholar 

  85. K.A. Hanafy, J.S. Krumenacker, F. Murad, NO, nitrotyrosine, and cyclic GMP in signal transduction. Med. Sci. Monit. 7, 801–819 (2001)

    CAS  PubMed  Google Scholar 

  86. J. Abrams, Nitroglycerin and long-acting nitrates in clinical practice. Am. J. Med. 74, 85–94 (1983)

    Article  CAS  PubMed  Google Scholar 

  87. S.H. Ralston, D. Todd, M. Helfrich, N. Benjamin, P.S. Grabowski, Human osteoblast-like cells produce nitric oxide and express inducible nitric oxide synthase. Endocrinology 135, 330–336 (1994)

    CAS  PubMed  Google Scholar 

  88. C.W. Löwik, P.H. Nibbering, M. van de Ruit, S.E. Papapoulos, Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J. Clin. Invest. 93, 1465–1472 (1994)

    Article  PubMed Central  PubMed  Google Scholar 

  89. S.J. Wimalawansa, G. De Marco, P. Gangula, C. Yallampalli, Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone 18, 301–304 (1996)

    Article  CAS  PubMed  Google Scholar 

  90. M. Hukkanen, L.A. Platts, T. Lawes, S.I. Girgis, Y.T. Konttinen, A.E. Goodship, I. MacIntyre, J.M. Polak, Effect of nitric oxide donor nitroglycerin on bone mineral density in a rat model of estrogen deficiency-induced osteopenia. Bone 32, 142–149 (2003)

    Article  CAS  PubMed  Google Scholar 

  91. S.A. Jamal, W.S. Browner, D.C. Bauer, S.R. Cummings, Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J. Bone Miner. Res. 13, 1755–1759 (1998)

    Article  CAS  PubMed  Google Scholar 

  92. L. Rejnmark, P. Vestergaard, L. Mosekilde, Decreased fracture risk in users of organic nitrates: a nationwide case-control study. J. Bone Miner. Res. 21, 1811–1817 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. S.A. Jamal, S.R. Cummings, G.A. Hawker, Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J. Bone Miner. Res. 19, 1512–1517 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. S. Pouwels, A. Lalmohamed, T. van Staa, C. Cooper, P. Souverein, H.G. Leufkens, L. Rejnmark, A. de Boer, P. Vestergaard, F. de Vries, Use of organic nitrates and the risk of hip fracture: a population-based case-control study. J. Clin. Endocrinol. Metab. 95, 1924–1931 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

No external funding source was required for this research. SRM received salary support from the Alberta Heritage Foundation for Medical Research—Alberta Innovates Health Solutions (Health Scholar), and holds the Endowed Chair in Patient Health Management (Faculties of Medicine and Dentistry and Pharmacy and Pharmaceutical Sciences, University of Alberta). The authors declare no potential conflict of interest with respect to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit R. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M., Majumdar, S.R. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine 46, 397–405 (2014). https://doi.org/10.1007/s12020-014-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0167-4

Keywords

Navigation