Skip to main content

Advertisement

Log in

Role of Histone Lysine Methyltransferases SUV39H1 and SETDB1 in Gliomagenesis: Modulation of Cell Proliferation, Migration, and Colony Formation

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Posttranslational modifications of histones are considered as critical regulators of gene expression, playing significant role in the pathogenesis and progression of tumors. Trimethylation of histone 3 lysine 9 (H3K9me3), a repressed transcription mark, is mainly regulated by the histone lysine N-methyltransferases (HKMTs), SUV39H1 and SETDB1. The present study investigated the implication of these HKMTs in glioma progression. SUV39H1 and SETDB1 expression was upregulated in glioma cell lines (GOS-3, 1321N1, T98G, U87MG) and in glioma tissues compared to normal brain being positively correlated with grade and histological malignancy. Suppression by siRNA of the two HKMTs for 24 and 48 h resulted in significantly reduced proliferation of GOS-3 and T98G glioma cells with siSUV39H1 effects been most prominent. Furthermore, HKMTs knockdown-induced apoptosis with a high rate of apoptotic cells have been observed after siSUV39H1 and siSETDB1 for both cell lines. Additionally, suppression of the two HKMTs reduced cell migration and clonogenic ability of both glioma cell lines. Our results indicate overexpression of SETDB1 and SUV39H1 in gliomas. Treatments that alter HKMT expression affect the proliferative and apoptotic rates in glioma cells as well as their migratory and colony formation capacity. These data suggest that both HKMTs and especially SUV39H1 may serve as novel biomarkers for future therapeutic targeting of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BRAF:

Serine/threonine-protein kinase B-raf

Dnmt:

DNA (cytosine-5)-methyltransferase

DOT1L:

Histone-lysine N-methyltransferase, H3 lysine-79 specific

EZH2:

Enhancer of Zeste 2

G9A:

Histone-lysine N-methyltransferase EHMT2

HCC:

Hepatocellular carcinoma

HKDM:

Histone lysine demethylase

HKMT:

Histone lysine N-methyltransferase

HP1:

Heterochromatin protein 1

IDH1:

Isocitrate dehydrogenase 1

SET9:

Histone-lysine N-methyltransferase SETD7

SETDB1:

SET domain bifurcated 1

SMYD3:

SET and MYND domain-containing protein 3

SUV39H1:

Suppressor of variegation 3–9 homolog 1

References

  • Aagaard, L., Schmid, M., Warburton, P., & Jenuwein, T. (2000). Mitotic phosphorylation of SUV39H1, a novel component of active centromeres, coincides with transient accumulation at mammalian centromeres. Journal of Cell Science, 113, 817–829.

    CAS  PubMed  Google Scholar 

  • Alimova, I., Venkataraman, S., Harris, P., Marquez, V. E., Northcott, P. A., Dubuc, A., et al. (2012). Targeting the enhancer of zeste homologue 2 in medulloblastoma. International Journal of Cancer, 131, 1800–1809.

    Article  CAS  Google Scholar 

  • Ayyanathan, K., Lechner, M. S., Bell, P., Maul, G. G., Schultz, D. C., Yamada, Y., et al. (2003). Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: A mammalian cell culture model of gene variegation. Genes & Development, 17, 1855–1869.

    Article  CAS  Google Scholar 

  • Babbio, F., Pistore, C., Curti, L., Castiglioni, I., Kunderfranco, P., Brino, L., et al. (2012). The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene, 31, 4878–4887.

    Article  CAS  PubMed  Google Scholar 

  • Baumgart, S., Glesel, E., Singh, G., Chen, N. M., Reutlinger, K., Zhang, J., et al. (2012). Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology, 142, 388–398.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennani-Baiti, I. M. (2011). Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics, 3, 715–732.

    Article  CAS  PubMed  Google Scholar 

  • Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., & Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. The EMBO journal, 22, 5323–5335.

    Article  CAS  PubMed  Google Scholar 

  • Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A. H., Schlegelberger, B., et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 436, 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Carbone, R., Botrugno, O. A., Ronzoni, S., Insinga, A., Di Croce, L., Pelicci, P. G., et al. (2006). Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Molecular and Cellular Biology, 26, 1288–1296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ceol, C. J., Houvras, Y., Jane-Valbuena, J., Bilodeau, S., Orlando, D. A., Battisti, V., et al. (2011). The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature, 471, 513–517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaib, H., Nebbioso, A., Prebet, T., Castellano, R., Garbit, S., Restouin, A., et al. (2012). Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia, 26, 662–674.

    Article  CAS  PubMed  Google Scholar 

  • Chernov, A. V., Sounni, N. E., Remacle, A. G., & Strongin, A. Y. (2009). Epigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells. The Journal of Biological Chemistry, 284, 12727–12734.

    Article  CAS  PubMed  Google Scholar 

  • Collett, K., Eide, G. E., Arnes, J., Stefansson, I. M., Eide, J., Braaten, A., et al. (2006). Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clinical Cancer Research, 12, 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  • Dong, C., Wu, Y., Wang, Y., Wang, C., Kang, T., Rychahou, P. G., et al. (2013). Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene, 32, 1351–1362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan, D. N., Tsang, F. H., Tam, A. H., Au, S. L., Wong, C. C., Wei, L., et al. (2013). Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology, 57, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Fanelli, M., Caprodossi, S., Ricci-Vitiani, L., Porcellini, A., Tomassoni-Ardori, F., Amatori, S., et al. (2008). Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment. Oncogene, 27, 358–365.

    Article  CAS  PubMed  Google Scholar 

  • Farmaki, E., Mkrtchian, S., Papazian, I., Papavassiliou, A. G., & Kiaris, H. (2011). ERp29 regulates response to doxorubicin by a PERK-mediated mechanism. Biochimica et Biophysica Acta, 1813, 1165–1171.

    Article  CAS  PubMed  Google Scholar 

  • Firestein, R., Cui, X., Huie, P., & Cleary, M. L. (2000). Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Molecular and Cellular Biology, 20, 4900–4909.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horbinski, C. (2013). To BRAF or not to BRAF: Is that even a question anymore? Journal of Neuropathology and Experimental Neurology, 72, 2–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hou, P., Liu, D., Dong, J., & Xing, M. (2012). The BRAF(V600E) causes widespread alterations in gene methylation in the genome of melanoma cells. Cell Cycle, 11, 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Kang, M. Y., Lee, B. B., Kim, Y. H., Chang, D. K., Kyu Park, S., Chun, H. K., et al. (2007). Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. International Journal of Cancer, 121, 2192–2197.

    Article  CAS  Google Scholar 

  • Karpinski, P., Ramsey, D., Grzebieniak, Z., Sasiadek, M. M., & Blin, N. (2008). The CpG island methylator phenotype correlates with long-range epigenetic silencing in colorectal cancer. Molecular Cancer Research, 6, 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Kassambara, A., Klein, B., & Moreaux, J. (2009). MMSET is overexpressed in cancers: Link with tumor aggressiveness. Biochemical and Biophysical Research Communications, 379, 840–845.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. A., Koo, B. K., Cho, J. H., Kim, Y. Y., Seong, J., Chang, H. J., et al. (2012). Notch1 counteracts WNT/beta-catenin signaling through chromatin modification in colorectal cancer. The Journal of Clinical Investigation, 122, 3248–3259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleer, C. G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S. A., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 11606–11611.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo, Y., Shen, L., Ahmed, S., Boumber, Y., Sekido, Y., Haddad, B. R., et al. (2008). Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One, 3, e2037.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kreth, S., Thon, N., Eigenbrod, S., Lutz, J., Ledderose, C., Egensperger, R., et al. (2011). O-methylguanine-DNA methyltransferase (MGMT) mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation. PLoS One, 6, e17156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lakshmikuttyamma, A., Scott, S. A., DeCoteau, J. F., & Geyer, C. R. (2010). Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene, 29, 576–588.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. H., Hung, H. W., Hung, P. H., & Shieh, Y. S. (2010). Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Molecular cancer, 9, 64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J., Son, M. J., Woolard, K., Donin, N. M., Li, A., Cheng, C. H., et al. (2008). Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell, 13, 69–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, H., Rauch, T., Chen, Z. X., Szabo, P. E., Riggs, A. D., & Pfeifer, G. P. (2006). The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. The Journal of Biological Chemistry, 281, 19489–19500.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren, D., Sjodahl, G., Lauss, M., Staaf, J., Chebil, G., Lovgren, K., et al. (2012). Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One, 7, e38863.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loenarz, C., & Schofield, C. J. (2008). Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chemical Biology, 4, 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., et al. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483, 474–478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macgregor, S., Montgomery, G. W., Liu, J. Z., Zhao, Z. Z., Henders, A. K., Stark, M., et al. (2011). Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genetics, 43, 1114–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6, 838–849.

    Article  CAS  PubMed  Google Scholar 

  • Northcott, P. A., Nakahara, Y., Wu, X., Feuk, L., Ellison, D. W., Croul, S., et al. (2009). Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 41, 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Orzan, F., Pellegatta, S., Poliani, P. L., Pisati, F., Caldera, V., Menghi, F., et al. (2011). Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathology and Applied Neurobiology, 37, 381–394.

    Article  CAS  PubMed  Google Scholar 

  • Patani, N., Jiang, W. G., Newbold, R. F., & Mokbel, K. (2011). Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Research, 31, 4115–4125.

    CAS  PubMed  Google Scholar 

  • Peters, A. H., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 107, 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Piperi, C., Themistocleous, M. S., Papavassiliou, G. A., Farmaki, E., Levidou, G., Korkolopoulou, P., et al. (2010). High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: Association with histopathological characteristics, inflammatory mediators and clinical outcome. Molecular Medicine, 16, 1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pogribny, I. P., Ross, S. A., Tryndyak, V. P., Pogribna, M., Poirier, L. A., & Karpinets, T. V. (2006). Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis, 27, 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  • Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  • Rai, K., Nadauld, L. D., Chidester, S., Manos, E. J., James, S. R., Karpf, A. R., et al. (2006). Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Molecular and Cellular Biology, 26, 7077–7085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Sarraf, S. A., & Stancheva, I. (2004). Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Molecular Cell, 15, 595–605.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G., & Rauscher, F. J, 3rd. (2002). SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes & Development, 16, 919–932.

    Article  CAS  Google Scholar 

  • Spyropoulou, A., Piperi, C., Adamopoulos, C., & Papavassiliou, A. G. (2013). Deregulated chromatin remodeling in the pathobiology of brain tumors. NeuroMolecular Medicine, 15, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., Yilmaz, E., et al. (2012). IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 483, 479–483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419, 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Venneti, S., Felicella, M. M., Coyne, T., Phillips, J. J., Gorovets, D., Huse, J. T., et al. (2013). Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. Journal of Neuropathology and Experimental Neurology, 72, 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. G., Allis, C. D., & Chi, P. (2007). Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends in Molecular Medicine, 13, 373–380.

    Article  PubMed  Google Scholar 

  • Wang, H., An, W., Cao, R., Xia, L., Erdjument-Bromage, H., Chatton, B., et al. (2003). mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Molecular Cell, 12, 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Soejima, K., Yasuda, H., Kawada, I., Nakachi, I., Yoda, S., et al. (2008). Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell International, 8, 15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Weikert, S., Christoph, F., Kollermann, J., Muller, M., Schrader, M., Miller, K., et al. (2005). Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. International Journal of Molecular Medicine, 16, 349–353.

    CAS  PubMed  Google Scholar 

  • Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al. (2009). IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine, 360, 765–773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christina Piperi or Athanasios G. Papavassiliou.

Additional information

Anastasia Spyropoulou and Antonios Gargalionis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spyropoulou, A., Gargalionis, A., Dalagiorgou, G. et al. Role of Histone Lysine Methyltransferases SUV39H1 and SETDB1 in Gliomagenesis: Modulation of Cell Proliferation, Migration, and Colony Formation. Neuromol Med 16, 70–82 (2014). https://doi.org/10.1007/s12017-013-8254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8254-x

Keywords

Navigation