Skip to main content

Advertisement

Log in

Functional Alterations in Memory Networks in Early Alzheimer’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The hallmark clinical symptom of early Alzheimer’s disease (AD) is episodic memory impairment. Recent functional imaging studies suggest that memory function is subserved by a set of distributed networks, which include both the medial temporal lobe (MTL) system and the set of cortical regions collectively referred to as the default network. Specific regions of the default network, in particular, the posteromedial cortices, including the precuneus and posterior cingulate, are selectively vulnerable to early amyloid deposition in AD. These regions are also thought to play a key role in both memory encoding and retrieval, and are strongly functionally connected to the MTL. Multiple functional magnetic resonance imaging (fMRI) studies during memory tasks have revealed alterations in these networks in patients with clinical AD. Similar functional abnormalities have been detected in subjects at-risk for AD, including those with genetic risk and older individuals with mild cognitive impairment. Recently, we and other groups have found evidence of functional alterations in these memory networks even among cognitively intact older individuals with occult amyloid pathology, detected by PET amyloid imaging. Taken together, these findings suggest that the pathophysiological process of AD exerts specific deleterious effects on these distributed memory circuits, even prior to clinical manifestations of significant memory impairment. Interestingly, some of the functional alterations seen in prodromal AD subjects have taken the form of increases in activity relative to baseline, rather than a loss of activity. It remains unclear whether these increases in fMRI activity may be compensatory to maintain memory performance in the setting of early AD pathology or instead, represent evidence of excitotoxicity and impending neuronal failure. Recent studies have also revealed disruption of the intrinsic connectivity of these networks observable even during the resting state in early AD and asymptomatic individuals with high amyloid burden. Research is ongoing to determine if these early network alterations will serve as sensitive predictors of clinical decline, and eventually, as markers of pharmacological response to potential disease-modifying treatments for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I., & Reiman, E. M. (2002). Longitudinal PET evaluation of cerebral metabolic decline in dementia: A potential outcome measure in Alzheimer’s disease treatment studies. American Journal of Psychiatry, 159, 738–745.

    PubMed  Google Scholar 

  • Alpar, A., Ueberham, U., Bruckner, M. K., Seeger, G., Arendt, T., & Gartner, U. (2006). Different dendrite and dendritic spine alterations in basal and apical arbors in mutant human amyloid precursor protein transgenic mice. Brain Research, 1099(1), 189–198.

    PubMed  Google Scholar 

  • Amieva, H., Le Goff, M., Millet, X., Orgogozo, J. M., Peres, K., Barberger-Gateau, P., et al. (2008). Prodromal Alzheimer’s disease: Successive emergence of the clinical symptoms. Annals of Neurology, 64, 492–498.

    PubMed  Google Scholar 

  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56, 924–935.

    PubMed  Google Scholar 

  • Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex, 1, 103–116.

    PubMed  Google Scholar 

  • Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., & Hyman, B. T. (1992a). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42, 631–639.

    PubMed  Google Scholar 

  • Arriagada, P. V., Marzloff, K., & Hyman, B. T. (1992b). Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology, 42, 1681–1688.

    PubMed  Google Scholar 

  • Bacskai, B. J., Frosch, M. P., Freeman, S. H., Raymond, S. B., Augustinack, J. C., Johnson, K. A., et al. (2007). Molecular imaging with Pittsburgh compound B confirmed at autopsy: A case report. Archives of Neurology, 64, 431–434.

    PubMed  Google Scholar 

  • Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., et al. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study. Neuroscience Letters, 438, 111–115.

    PubMed  Google Scholar 

  • Baig, S., Wilcock, G. K., & Love, S. (2005). Loss of perineuronal net N-acetylgalactosamine in Alzheimer’s disease. Acta Neuropathologica, 110, 393–401.

    PubMed  Google Scholar 

  • Bakkour, A., Morris, J. C., & Dickerson, B. C. (2008). The cortical signature of prodromal AD. Regional thinning predicts mild AD dementia. Neurology, 72, 1048–1055.

    PubMed  Google Scholar 

  • Bassett, S. S., Yousem, D. M., Cristinzio, C., Kusevic, I., Yassa, M. A., Caffo, B. S., et al. (2006). Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain, 129, 1229–1239.

    PubMed  Google Scholar 

  • Bennett, D., Schneider, J., Arvanitakis, Z., Kelly, J., Aggarwal, N., Shah, R., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 1837–1844.

    PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

    PubMed  Google Scholar 

  • Black, R., Sperling, R., Kirby, L., Safirstein, B., Motter, R., Pallay, A., et al. (2010) A single-ascending dose study of bapineuzumab (AAB-001), a humanized monoclonal antibody to A-beta, in AD. Alzheimer’s Disease and Associated Disorders (e-pub).

  • Bondi, M. W., Houston, W. S., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 64, 501–508.

    PubMed  Google Scholar 

  • Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. New England Journal of Medicine, 343, 450–456.

    PubMed  Google Scholar 

  • Borghesani, P. R., Johnson, L. C., Shelton, A. L., Peskind, E. R., Aylward, E. H., Schellenberg, G. D., et al. (2007). Altered medial temporal lobe responses during visuospatial encoding in healthy APOE*4 carriers. Neurobiology of Aging, 29, 981–991.

    PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl), 82, 239–259.

    Google Scholar 

  • Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–1187.

    PubMed  Google Scholar 

  • Buckner, R. L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195–208.

    PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    PubMed  Google Scholar 

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29, 1860–1873.

    PubMed  Google Scholar 

  • Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25, 7709–7717.

    PubMed  Google Scholar 

  • Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.

    PubMed  Google Scholar 

  • Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. Journal of Neuroscience, 26, 10222–10231.

    PubMed  Google Scholar 

  • Chetelat, G., Landeau, B., Eustache, F., Mezenge, F., Viader, F., de la Sayette, V., et al. (2005). Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage, 27, 934–946.

    PubMed  Google Scholar 

  • Chua, E. F., Schacter, D. L., Rand-Giovannetti, E., & Sperling, R. A. (2006). Understanding metamemory: Neural correlates of the cognitive process and subjective level of confidence in recognition memory. Neuroimage, 29, 1150–1160.

    PubMed  Google Scholar 

  • Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., et al. (2005). Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron, 48, 913–922.

    PubMed  Google Scholar 

  • Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8, 79–84.

    PubMed  Google Scholar 

  • Clement, F., & Belleville, S. (2009). Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Human Brain Mapping, 30, 4033–4047.

    PubMed  Google Scholar 

  • Cohen, E. R., Ugurbil, K., & Kim, S. G. (2002). Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. Journal of Cerebral Blood Flow and Metabolism, 22, 1042–1053.

    PubMed  Google Scholar 

  • Coleman, P., Federoff, H., & Kurlan, R. (2004). A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology, 63, 1155–1162.

    PubMed  Google Scholar 

  • D’Amore, J. D., Kajdasz, S. T., McLellan, M. E., Bacskai, B. J., Stern, E. A., & Hyman, B. T. (2003). In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. Journal of Neuropathology and Experimental Neurology, 62, 137–145.

    PubMed  Google Scholar 

  • D’Esposito, M., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage, 10, 6–14.

    PubMed  Google Scholar 

  • Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof, F., Scheltens, P., Stam, C. J., et al. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18, 1856–1864.

    PubMed  Google Scholar 

  • Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16(12), 1771–1782.

    PubMed  Google Scholar 

  • Daselaar, S. M., Prince, S. E., & Cabeza, R. (2004). When less means more: Deactivations during encoding that predict subsequent memory. Neuroimage, 23, 921–927.

    PubMed  Google Scholar 

  • Daselaar, S. M., Veltman, D. J., Rombouts, S. A., Raaijmakers, J. G., & Jonker, C. (2003). Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain, 126, 43–56.

    PubMed  Google Scholar 

  • Davis, T. L., Kwong, K. K., Weisskoff, R. M., & Rosen, B. R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 1834–1839.

    PubMed  Google Scholar 

  • DeKosky, S. T., Ikonomovic, M. D., Styren, S. D., Beckett, L., Wisniewski, S., Bennett, D. A., et al. (2002). Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of Neurology, 51, 145–155.

    PubMed  Google Scholar 

  • DeKosky, S. T., & Marek, K. (2003). Looking backward to move forward: Early detection of neurodegenerative disorders. Science, 302, 830–834.

    PubMed  Google Scholar 

  • Dickerson, B. C., Miller, S. L., Greve, D. N., Dale, A. M., Albert, M. S., Schacter, D. L., et al. (2007a). Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: An event-related functional-anatomic MRI study. Hippocampus, 17(11), 1060–1070.

    PubMed  Google Scholar 

  • Dickerson, B. C., Salat, D. H., Bates, J. F., Atiya, M., Killiany, R. J., Greve, D. N., et al. (2004). Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology, 56, 27–35.

    PubMed  Google Scholar 

  • Dickerson, B. C., Salat, D., Greve, D., Chua, E., Rand-Giovannetti, E., Rentz, D., et al. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65, 404–411.

    PubMed  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2005). Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx, 2, 348–360.

    PubMed  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: Insights from functional MRI studies. Neuropsychologia, 46, 1624–1635.

    PubMed  Google Scholar 

  • Dickerson, B. C., Sperling, R. A., Hyman, B. T., Albert, M. S., & Blacker, D. (2007b). Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Archives of General Psychiatry, 64, 1443–1450.

    PubMed  Google Scholar 

  • Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.

    PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734–746.

    PubMed  Google Scholar 

  • Eichenbaum, H., & Bunsey, M. (1995). On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired-associate learning. Current Directions in Psychological Science, 4, 19–23.

    Google Scholar 

  • Eichenbaum, H., Schoenbaum, G., Young, B., & Bunsey, M. (1996). Functional organization of the hippocampal memory system. Proceedings of the National Academy of Sciences of the United States of America, 93, 13500–13507.

    PubMed  Google Scholar 

  • Fagan, A. M., Head, D., Shah, A. R., Marcus, D., Mintun, M., Morris, J. C., et al. (2009). Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Annals of Neurology, 65, 176–183.

    PubMed  Google Scholar 

  • Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., et al. (2006). Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology, 59, 512–519.

    PubMed  Google Scholar 

  • Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.

    PubMed  Google Scholar 

  • Fleisher, A. S., Houston, W. S., Eyler, L. T., Frye, S., Jenkins, C., Thal, L. J., et al. (2005). Identification of Alzheimer disease risk by functional magnetic resonance imaging. Archives of Neurology, 62, 1881–1888.

    PubMed  Google Scholar 

  • Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009). Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage, 47(4), 1678–1690.

    PubMed  Google Scholar 

  • Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8, 58–71.

    PubMed  Google Scholar 

  • Gallo, D. A., Sullivan, A. L., Daffner, K. R., Schacter, D. L., & Budson, A. E. (2004). Associative recognition in Alzheimer’s disease: Evidence for impaired recall-to-reject. Neuropsychology, 18, 556–563.

    PubMed  Google Scholar 

  • Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.

    PubMed  Google Scholar 

  • Golby, A., Silverberg, G., Race, E., Gabrieli, S., O’Shea, J., Knierim, K., et al. (2005). Memory encoding in Alzheimer’s disease: An fMRI study of explicit and implicit memory. Brain, 128, 773–787.

    PubMed  Google Scholar 

  • Gomperts, S. N., Rentz, D. M., Moran, E., Becker, J. A., Locascio, J. J., Klunk, W. E., et al. (2008). Imaging amyloid deposition in Lewy body diseases. Neurology, 71, 903–910.

    PubMed  Google Scholar 

  • Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 23, 986–993.

    PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.

    PubMed  Google Scholar 

  • Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101, 4637–4642.

    PubMed  Google Scholar 

  • Gron, G., Bittner, D., Schmitz, B., Wunderlich, A. P., & Riepe, M. W. (2002). Subjective memory complaints: Objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Annals of Neurology, 51, 491–498.

    PubMed  Google Scholar 

  • Grundman, M., et al. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61, 59–66.

    PubMed  Google Scholar 

  • Haier, R. J., Alkire, M. T., White, N. S., Uncapher, M. R., Head, E., Lott, I. T., et al. (2003). Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 61, 1673–1679.

    PubMed  Google Scholar 

  • Hamalainen, A., Pihlajamaki, M., Tanila, H., Hanninen, T., Niskanen, E., Tervo, S., et al. (2007). Increased fMRI responses during encoding in mild cognitive impairment. Neurobiology of Aging, 28, 1889–1903.

    PubMed  Google Scholar 

  • Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., et al. (2007). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging, 28, 238–247.

    PubMed  Google Scholar 

  • Hashimoto, M., & Masliah, E. (2003). Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer’s and dementia with Lewy bodies. Neurochemical Research, 28, 1743–1756.

    PubMed  Google Scholar 

  • Hedden, T., Van Dijk, K., Becker, J. A., Mehta, A., Sperling, R. A., Johnson, K. A., et al. (2009). Disruption of default network functional connectivity in clinically normal older adults harboring amyloid burden. Journal of Neuroscience, 29(40), 12686–12694.

    PubMed  Google Scholar 

  • Heun, R., Freymann, K., Erb, M., Leube, D. T., Jessen, F., Kircher, T. T., et al. (2007). Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiology of Aging, 28, 404–413.

    PubMed  Google Scholar 

  • Hulette, C. M., Welsh-Bohmer, K. A., Murray, M. G., Saunders, A. M., Mash, D. C., & McIntyre, L. M. (1998). Neuropathological and neuropsychological changes in “normal” aging: Evidence for preclinical Alzheimer disease in cognitively normal individuals. Journal of Neuropathology and Experimental Neurology, 57, 1168–1174.

    PubMed  Google Scholar 

  • Hyman, B. T., Marzloff, K., Wenniger, J. J., Dawson, T. M., Bredt, D. S., & Snyder, S. H. (1992). Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease. Annals of Neurology, 32, 818–820.

    PubMed  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.

    PubMed  Google Scholar 

  • Ikonomovic, M. D., Klunk, W. E., Abrahamson, E. E., Mathis, C. A., Price, J. C., Tsopelas, N. D., et al. (2008). Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain, 131, 1630–1645.

    PubMed  Google Scholar 

  • Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., et al. (2004). Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 62, 925–931.

    PubMed  Google Scholar 

  • Jack, C. R, Jr., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., et al. (2008). 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain, 131, 665–680.

    PubMed  Google Scholar 

  • Jack, C. R, Jr., Lowe, V. J., Weigand, S. D., Wiste, H. J., Senjem, M. L., Knopman, D. S., et al. (2009). Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: Implications for sequence of pathological events in Alzheimer’s disease. Brain, 132, 1355–1365.

    PubMed  Google Scholar 

  • Jagust, W., Gitcho, A., Sun, F., Kuczynski, B., Mungas, D., & Haan, M. (2006). Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Annals of Neurology, 59, 673–681.

    PubMed  Google Scholar 

  • Johnson, S. C., Baxter, L. C., Susskind-Wilder, L., Connor, D. J., Sabbagh, M. N., & Caselli, R. J. (2004). Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia, 42, 980–989.

    PubMed  Google Scholar 

  • Johnson, K. A., Gregas, M., Becker, J. A., Kinnecom, C., Salat, D. H., Moran, E. K., et al. (2007). Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Annals of Neurology, 62, 229–234.

    PubMed  Google Scholar 

  • Johnson, S. C., Schmitz, T. W., Moritz, C. H., Meyerand, M. E., Rowley, H. A., Alexander, A. L., et al. (2006a). Activation of brain regions vulnerable to Alzheimer’s disease: The effect of mild cognitive impairment. Neurobiology of Aging, 27, 1604–1612.

    PubMed  Google Scholar 

  • Johnson, S. C., Schmitz, T. W., Trivedi, M. A., Ries, M. L., Torgerson, B. M., Carlsson, C. M., et al. (2006b). The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. Journal of Neuroscience, 26, 6069–6076.

    PubMed  Google Scholar 

  • Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z., & Buckner, R. L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(1), 129–139.

    PubMed  Google Scholar 

  • Kato, T., Knopman, D., & Liu, H. (2001). Dissociation of regional activation in mild AD during visual encoding: A functional MRI study. Neurology, 57, 812–816.

    PubMed  Google Scholar 

  • Katzman, R. (1997). The aging brain. Limitations in our knowledge and future approaches. Archives of Neurology, 54, 1201–1205.

    PubMed  Google Scholar 

  • Kircher, T., Weis, S., Freymann, K., Erb, M., Jessen, F., Grodd, W., et al. (2007). Hippocampal activation in MCI patients is necessary for successful memory encoding. Journal of Neurology, Neurosurgery and Psychiatry, 78(8), 812–818.

    Google Scholar 

  • Kirwan, C. B., & Stark, C. E. (2004). Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus, 14, 919–930.

    PubMed  Google Scholar 

  • Klein, W. L. (2006). Synaptic targeting by A-beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease. Alzheimer’s & Dementia, 2, 43–55.

    Google Scholar 

  • Klunk, W. E., et al. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Annals of Neurology, 55, 306–319.

    PubMed  Google Scholar 

  • Klyubin, I., Walsh, D. M., Lemere, C. A., Cullen, W. K., Shankar, G. M., Betts, V., et al. (2005). Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nature Medicine, 11, 556–561.

    PubMed  Google Scholar 

  • Kobayashi, Y., & Amaral, D. G. (2007). Macaque monkey retrosplenial cortex: III. Cortical efferents. Journal of Comparative Neurology, 502, 810–833.

    PubMed  Google Scholar 

  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 5675–5679.

    PubMed  Google Scholar 

  • Leirer, V. O., Morrow, D. G., Sheikh, J. I., & Pariante, G. M. (1990). Memory skills elders want to improve. Experimental Aging Research, 16, 155–158.

    PubMed  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    PubMed  Google Scholar 

  • Lind, J., Ingvar, M., Persson, J., Sleegers, K., Van Broeckhoven, C., Adolfsson, R., et al. (2006a). Parietal cortex activation predicts memory decline in apolipoprotein E-epsilon4 carriers. Neuroreport, 17, 1683–1686.

    PubMed  Google Scholar 

  • Lind, J., Larsson, A., Persson, J., Ingvar, M., Nilsson, L. G., Backman, L., et al. (2006b). Reduced hippocampal volume in non-demented carriers of the apolipoprotein E epsilon4: Relation to chronological age and recognition memory. Neuroscience Letters, 396, 23–27.

    PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.

    PubMed  Google Scholar 

  • Lopresti, B. J., Klunk, W. E., Mathis, C. A., Hoge, J. A., Ziolko, S. K., Lu, X., et al. (2005). Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: A comparative analysis. Journal of Nuclear Medicine, 46, 1959–1972.

    PubMed  Google Scholar 

  • Lustig, C., & Buckner, R. L. (2004). Preserved neural correlates of priming in old age and dementia. Neuron, 42, 865–875.

    PubMed  Google Scholar 

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.

    PubMed  Google Scholar 

  • Machielsen, W. C., Rombouts, S. A., Barkhof, F., Scheltens, P., & Witter, M. P. (2000). FMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9, 156–164.

    PubMed  Google Scholar 

  • Machulda, M. M., Ward, H. A., Borowski, B., Gunter, J. L., Cha, R. H., O’Brien, P. C., et al. (2003). Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology, 61, 500–506.

    PubMed  Google Scholar 

  • Manoach, D. S., Halpern, E. F., Kramer, T. S., Chang, Y., Goff, D. C., Rauch, S. L., et al. (2001). Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. American Journal of Psychiatry, 158, 955–958.

    PubMed  Google Scholar 

  • Markesbery, W. R., Schmitt, F. A., Kryscio, R. J., Davis, D. G., Smith, C. D., & Wekstein, D. R. (2006). Neuropathologic substrate of mild cognitive impairment. Archives of Neurology, 63, 38–46.

    PubMed  Google Scholar 

  • Mathis, C. A., Price, J., McNamee, R. L., Redfield, A. S., Berginc, M., Klunk, W. E., et al. (2008). Initial report of ADNI PIB-PET imaging studies. In Human Amyloid Imaging, Chicago, Illinois.

  • Mathis, C. A., Wang, Y., Holt, D. P., Huang, G. F., Debnath, M. L., & Klunk, W. E. (2003). Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. Journal of Medicinal Chemistry, 46, 2740–2754.

    PubMed  Google Scholar 

  • Meguro, K., LeMestric, C., Landeau, B., Desgranges, B., Eustache, F., & Baron, J. C. (2001). Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: A PET/MRI correlative study. Journal of Neurology, Neurosurgery and Psychiatry, 71, 315–321.

    Google Scholar 

  • Meltzer, C. C., Zubieta, J. K., Brandt, J., Tune, L. E., Mayberg, H. S., & Frost, J. J. (1996). Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology, 47, 454–461.

    PubMed  Google Scholar 

  • Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597–613.

    PubMed  Google Scholar 

  • Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(Pt 6), 1013–1052.

    PubMed  Google Scholar 

  • Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., et al. (2008). Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature, 451, 720–724.

    PubMed  Google Scholar 

  • Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008a). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2181–2186.

    PubMed  Google Scholar 

  • Miller, S. L., Fenstermacher, E., Bates, J., Blacker, D., Sperling, R. A., & Dickerson, B. C. (2008b). Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. Journal of Neurology, Neurosurgery and Psychiatry, 79, 630–635.

    Google Scholar 

  • Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452.

    PubMed  Google Scholar 

  • Mintun, M. A., Vlassenko, A., Sacco, D., LaRossa, G. N., Sheline, Y. I., Mach, R. H., et al. (2008) Patterns of 11C PIB uptake in non-demented subjects. In Human Amyloid Imaging, Chicago, Ilinois.

  • Mondadori, C. R., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., et al. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 129, 2908–2922.

    PubMed  Google Scholar 

  • Mondadori, C. R., de Quervain, D. J., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., et al. (2007). Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cerebral Cortex, 17, 1934–1947.

    PubMed  Google Scholar 

  • Morcom, A. M., & Fletcher, P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. Neuroimage, 37, 1073–1082.

    Google Scholar 

  • Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., et al. (2008). Episodic memory loss is related to hippocampal-mediated {beta}-amyloid deposition in elderly subjects. Brain, 132(Pt 5), 1310–1323.

    PubMed  Google Scholar 

  • Morris, J. C., & Cummings, J. (2005). Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. Journal of Alzheimer’s Disease, 7, 235–239. discussion 255-262.

    PubMed  Google Scholar 

  • Morris, J. C., McKeel, D. W, Jr., Storandt, M., Rubin, E. H., Price, J. L., Grant, E. A., et al. (1991). Very mild Alzheimer’s disease: Informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology, 41, 469–478.

    PubMed  Google Scholar 

  • Morris, J. C., Storandt, M., McKeel, D. W, Jr., Rubin, E. H., Price, J. L., Grant, E. A., et al. (1996). Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology, 46, 707–719.

    PubMed  Google Scholar 

  • Oddo, S., Caccamo, A., Tran, L., Lambert, M. P., Glabe, C. G., Klein, W. L., et al. (2006). Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem, 281, 1599–1604.

    PubMed  Google Scholar 

  • Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78.

    PubMed  Google Scholar 

  • Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.

    PubMed  Google Scholar 

  • Pariente, J., Cole, S., Henson, R., Clare, L., Kennedy, A., Rossor, M., et al. (2005). Alzheimer’s patients engage an alternative network during a memory task. Annals of Neurology, 58, 870–879.

    PubMed  Google Scholar 

  • Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46, 1679–1687.

    PubMed  Google Scholar 

  • Petersen, R. C., Parisi, J. E., Dickson, D. W., Johnson, K. A., Knopman, D. S., Boeve, B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology, 63, 665–672.

    PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308.

    PubMed  Google Scholar 

  • Petrella, J. R., Krishnan, S., Slavin, M. J., Tran, T. T., Murty, L., & Doraiswamy, P. M. (2006). Mild cognitive impairment: Evaluation with 4-T functional MR imaging. Radiology, 240, 177–186.

    PubMed  Google Scholar 

  • Petrella, J. R., Prince, S. E., Wang, L., Hellegers, C., & Doraiswamy, P. M. (2007). Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS ONE, 2, e1104.

    PubMed  Google Scholar 

  • Pihlajamaki, M., Depeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. American Journal of Geriatric Psychiatry, 16, 283–292.

    PubMed  Google Scholar 

  • Pihlajamaki, M., O’Keefe, K., Bertram, L., Tanzi, R., Dickerson, B., Blacker, D., et al. (2009). Evidence of altered posteromedial cortical fMRI activity in subjects at risk for Alzheimer disease. Alzheimer Disease and Associated Disorders (e-pub).

  • Pike, K. E., Savage, G., Villemagne, V. L., Ng, S., Moss, S. A., Maruff, P., et al. (2007). Beta-amyloid imaging and memory in non-demented individuals: Evidence for preclinical Alzheimer’s disease. Brain, 130, 2837–2844.

    PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8, 102–108.

    PubMed  Google Scholar 

  • Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.

    PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.

    PubMed  Google Scholar 

  • Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proceedings of the National Academy of Sciences of the United States of America, 101, 284–289.

    PubMed  Google Scholar 

  • Remy, F., Mirrashed, F., Campbell, B., & Richter, W. (2004). Mental calculation impairment in Alzheimer’s disease: A functional magnetic resonance imaging study. Neuroscience Letters, 358, 25–28.

    PubMed  Google Scholar 

  • Remy, F., Mirrashed, F., Campbell, B., & Richter, W. (2005). Verbal episodic memory impairment in Alzheimer’s disease: A combined structural and functional MRI study. Neuroimage, 25, 253–266.

    PubMed  Google Scholar 

  • Rentz, D. M., Sardinha, L. M., Manning, L. N., Moran, E. K., Becker, J. A., DeKosky, S. T., et al. (2006). Amyloid burden correlates with cognitive function in normal aging, MCI and AD. In Alzheimer Imaging Consortium, International Conference on Alzheimer’s Disease. Madrid, Spain.

  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005a). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26, 231–239.

    PubMed  Google Scholar 

  • Rombouts, S. A., Barkhof, F., Veltman, D. J., Machielsen, W. C., Witter, M. P., Bierlaagh, M. A., et al. (2000). Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR. American Journal of Neuroradiology, 21, 1869–1875.

    PubMed  Google Scholar 

  • Rombouts, S. A., Damoiseaux, J. S., Goekoop, R., Barkhof, F., Scheltens, P., Smith, S. M., et al. (2009). Model-free group analysis shows altered BOLD FMRI networks in dementia. Human Brain Mapping, 30, 256–266.

    PubMed  Google Scholar 

  • Rombouts, S. A., Goekoop, R., Stam, C. J., Barkhof, F., & Scheltens, P. (2005b). Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage, 26, 1078–1085.

    PubMed  Google Scholar 

  • Schwindt, G. C., & Black, S. E. (2009). Functional imaging studies of episodic memory in Alzheimer’s disease: A quantitative meta-analysis. Neuroimage, 45, 181–190.

    PubMed  Google Scholar 

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.

    PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.

    PubMed  Google Scholar 

  • Sheth, S. A., Nemoto, M., Guiou, M., Walker, M., Pouratian, N., & Toga, A. W. (2004). Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron, 42, 347–355.

    PubMed  Google Scholar 

  • Shmuel, A., Augath, M., Oeltermann, A., & Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 9, 569–577.

    PubMed  Google Scholar 

  • Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks: Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663.

    Google Scholar 

  • Silverman, D. H., et al. (2001). Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA, 286, 2120–2127.

    PubMed  Google Scholar 

  • Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97, 6037–6042.

    PubMed  Google Scholar 

  • Small, S. A., Nava, A. S., Perera, G. M., DeLaPaz, R., Mayeux, R., & Stern, Y. (2001). Circuit mechanisms underlying memory encoding and retrieval in the long axis of the hippocampal formation. Nature Neuroscience, 4, 442–449.

    PubMed  Google Scholar 

  • Small, S. A., Perera, G. M., DeLaPaz, R., Mayeux, R., & Stern, Y. (1999). Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Annals of Neurology, 45, 466–472.

    PubMed  Google Scholar 

  • Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., et al. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology, 53, 1391–1396.

    PubMed  Google Scholar 

  • Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., et al. (2002). Women at risk for AD show increased parietal activation during a fluency task. Neurology, 58, 1197–1202.

    PubMed  Google Scholar 

  • Smith, C. D., Chebrolu, H., Wekstein, D. R., Schmitt, F. A., Jicha, G. A., Cooper, G., et al. (2007). Brain structural alterations before mild cognitive impairment. Neurology, 68, 1268–1273.

    PubMed  Google Scholar 

  • Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., et al. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 18760–18765.

    PubMed  Google Scholar 

  • Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155.

    PubMed  Google Scholar 

  • Sperling, R. A., Bates, J. F., Chua, E. F., Cocchiarella, A. J., Rentz, D. M., Rosen, B. R., et al. (2003a). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74, 44–50.

    Google Scholar 

  • Sperling, R. A., Bates, J., Cocchiarella, A., Schacter, D., Rosen, B., & Albert, M. (2001). Encoding Novel Face-Name Associations: A Functional MRI Study. Human Brain Mapping, 14, 129–139.

    PubMed  Google Scholar 

  • Sperling, R., Chua, E., Cocchiarella, A., Rand-Giovannetti, E., Poldrack, R., Schacter, D. L., et al. (2003b). Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage, 20, 1400–1410.

    PubMed  Google Scholar 

  • Sperling, R., Greve, D., Dale, A., Killiany, R., Holmes, J., Rosas, H. D., et al. (2002). Functional MRI detection of pharmacologically induced memory impairment. Proceedings of the National Academy of Sciences of the United States of America, 99, 455–460.

    PubMed  Google Scholar 

  • Sperling, R. A., Laviolette, P., O’Keefe, K., O’Brien, J., Rentz, D., Pihlajamaki, M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178–188.

    PubMed  Google Scholar 

  • Sperling, R. A., O’Brien, J., O’Keefe, K., DeLuca, A., LaViolette, P., Bakkour, A., et al. (2008). Longitudinal fMRI demonstrates loss of hippocampal activation over the course of MCI. Neurology, 70, A445.

    Google Scholar 

  • Spires, T. L., & Hyman, B. T. (2004). Neuronal structure is altered by amyloid plaques. Reviews in the Neurosciences, 15, 267–278.

    PubMed  Google Scholar 

  • Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.

    PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.

    PubMed  Google Scholar 

  • Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20, 112–117.

    PubMed  Google Scholar 

  • Stern, E. A., Bacskai, B. J., Hickey, G. A., Attenello, F. J., Lombardo, J. A., & Hyman, B. T. (2004). Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. Journal of Neuroscience, 24, 4535–4540.

    PubMed  Google Scholar 

  • Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia, 44, 2189–2208.

    PubMed  Google Scholar 

  • Thompson, J. K., Peterson, M. R., & Freeman, R. D. (2003). Single-neuron activity and tissue oxygenation in the cerebral cortex. Science, 299, 1070–1072.

    PubMed  Google Scholar 

  • Tomlinson, B. E., Blessed, G., & Roth, M. (1970). Observations on the brains of demented old people. Journal of the Neurological Sciences, 11, 205–242.

    PubMed  Google Scholar 

  • Trivedi, M. A., Schmitz, T. W., Ries, M. L., Torgerson, B. M., Sager, M. A., Hermann, B. P., et al. (2006). Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: A cross-sectional study. BMC Medicine, 4, 1.

    PubMed  Google Scholar 

  • Vannini, P., O’Brien, J., Putcha, D., O’Keefe, K., Pihlajamaki, M., LaViolette, P., et al. (2009). Successful memory retrieval requires increased parietal activity in asymptomatic older adults with high amyloid burden. In International Conference on Alzheimer’s Disease. Vienna, Austria.

  • Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447, 83–86.

    PubMed  Google Scholar 

  • Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., et al. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96, 3517–3531.

    PubMed  Google Scholar 

  • Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., et al. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191.

    PubMed  Google Scholar 

  • Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453.

    PubMed  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    PubMed  Google Scholar 

  • Walsh, D. M., & Selkoe, D. J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 44, 181–193.

    PubMed  Google Scholar 

  • Weksler, M. E., Gouras, G., Relkin, N. R., & Szabo, P. (2005). The immune system, amyloid-beta peptide, and Alzheimer’s disease. Immunological Reviews, 205, 244–256.

    PubMed  Google Scholar 

  • Whitwell, J. L., Shiung, M. M., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., et al. (2007). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70(7), 512–520.

    PubMed  Google Scholar 

  • Wierenga, C. E., & Bondi, M. W. (2007). Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychology Review, 17, 127–143.

    PubMed  Google Scholar 

  • Wishart, H. A., Saykin, A. J., McDonald, B. C., Mamourian, A. C., Flashman, L. A., Schuschu, K. R., et al. (2004). Brain activation patterns associated with working memory in relapsing-remitting MS. Neurology, 62, 234–238.

    PubMed  Google Scholar 

  • Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2003). Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science, 299, 577–580.

    PubMed  Google Scholar 

  • Zelinski, E. M., & Gilewski, M. J. (1988). Assessment of memory complaints by rating scales and questionnaires. Psychopharmacology Bulletin, 24, 523–529.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute on Aging P01 AG036694; R01 AG-027435; P50 AG005134, the Alzheimer’s Association, and an Anonymous Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reisa A. Sperling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperling, R.A., Dickerson, B.C., Pihlajamaki, M. et al. Functional Alterations in Memory Networks in Early Alzheimer’s Disease. Neuromol Med 12, 27–43 (2010). https://doi.org/10.1007/s12017-009-8109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8109-7

Keywords

Navigation