Skip to main content

Advertisement

Log in

Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The conversion of an arginine residue in a protein to a citrulline residue, a reaction carried out by enzymes called peptidylarginine deiminases (PADs), is rather subtle. One of the terminal imide groups in arginine is replaced by oxygen in citrulline, thus resulting in the loss of positive charge and the gain of 1 dalton. This post-translational modification by PAD enzymes is conserved in vertebrates and affects specific substrates during development and in various mature cell lineages. Citrullination offers a unique perspective on autoimmunity because PAD activity is stringently regulated, yet autoantibodies to citrullinated proteins predictably arise. Autoantigens recognized by anti-citrullinated protein antibodies (ACPA) include extracellular proteins such as filaggrin, collagen II, fibrinogen, and calreticulin; membrane-associated proteins such as myelin basic protein; cytoplasmic proteins such as vimentin and enolase; and even nuclear proteins such as histones. Some ACPA are remarkably effective as diagnostics in autoimmune disorders, most notably rheumatoid arthritis (RA). Several ACPA can be observed before other clinical RA manifestations are apparent. In patients with RA, ACPA may attain a sensitivity that exceeds 70 % and specificity that approaches 96–98 %. The biological context that may account for the induction of ACPA emerges from studies of the cellular response of the innate immune system to acute or chronic stimuli. In response to infections or inflammation, neutrophil granulocytes activate PAD, citrullinate multiple autoantigens, and expel chromatin from the cell. The externalized chromatin is called a neutrophil extracellular “trap” (NET). Citrullination of core and linker histones occurs prior to the release of chromatin from neutrophils, thus implicating the regulation of citrullinated chromatin release in the development of autoreactivity. The citrullination of extracellular autoantigens likely follows the release of NETs and associated PADs. Autoantibodies to citrullinated histones arise in RA, systemic lupus erythematosus, and Felty’s syndrome patients. The citrullination of linker histone H1 may play a key role in NET release because the H1 histone regulates the entry and exit of DNA from the nucleosome. Juxtaposition of citrullinated histones with infectious pathogens and complement and immune complexes may compromise tolerance of nuclear autoantigens and promote autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rogers GE, Simmonds DH (1958) Content of citrulline and other amino-acids in a protein of hair follicles. Nature 182:186–187

    Article  CAS  PubMed  Google Scholar 

  2. Vossenaar ER, van Zendman AJ, Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  CAS  PubMed  Google Scholar 

  3. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12:616–627

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Mallya RK, Young BJ, Pepys MB, Hamblin TJ, Mace BE, Hamilton EB (1983) Anti-keratin antibodies in rheumatoid arthritis: frequency and correlation with other features of the disease. Clin Exp Immunol 51:17–20

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Jones JC, Arnn J, Staehelin LA, Goldman RD (1984) Human autoantibodies against desmosomes: possible causative factors in pemphigus. Proc Natl Acad Sci U S A 81:2781–2785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Simon M, Girbal E, Sebbag M, Gomes-Daudrix V, Vincent C, Salama G, Serre G (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 92:1387–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. de Schellekens GA, van den Jong BA, van de Hoogen FH, Putte LB, van Venrooij WJ (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101:273–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. van Venrooij WJ, van Beers JJ, Pruijn GJ (2011) Anti-CCP antibodies: the past, the present and the future. Nat Rev Rheumatol 7:391–398

    Article  PubMed  Google Scholar 

  9. Iobagiu C, Magyar A, Nogueira L, Cornillet M, Sebbag M, Arnaud J, Hudecz F, Serre G (2011) The antigen specificity of the rheumatoid arthritis-associated ACPA directed to citrullinated fibrin is very closely restricted. J Autoimmun 37:263–272

    Article  CAS  PubMed  Google Scholar 

  10. Gomara MJ, Haro I (2013) Citrullinated peptides in the diagnosis of rheumatoid arthritis. Curr Top Med Chem 13:743–751

    Article  CAS  PubMed  Google Scholar 

  11. Suwannalai P, Britsemmer K, Knevel R, Scherer HU, van der Levarht EW, van Helm-van Mil AH, Schaardenburg D, Huizinga TW, Toes RE, Trouw LA (2014) Low-avidity anticitrullinated protein antibodies (ACPA) are associated with a higher rate of joint destruction in rheumatoid arthritis. Ann Rheum Dis 73:270–276

    Article  CAS  PubMed  Google Scholar 

  12. Cornillet M, Sebbag M, Verrouil E, Magyar A, Babos F, Ruyssen-Witrand A, Hudecz F, Cantagrel A, Serre G, Nogueira L (2014) The fibrin-derived citrullinated peptide beta60-74Cit60,72,74 bears the major ACPA epitope recognised by the rheumatoid arthritis-specific anticitrullinated fibrinogen autoantibodies and anti-CCP2 antibodies. Ann Rheum Dis 73:1246–1252

    Article  CAS  PubMed  Google Scholar 

  13. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581

    Article  PubMed  Google Scholar 

  14. Martin R, Whitaker JN, Rhame L, Goodin RR, McFarland HF (1994) Citrulline-containing myelin basic protein is recognized by T-cell lines derived from multiple sclerosis patients and healthy individuals. Neurology 44:123–129

    Article  CAS  PubMed  Google Scholar 

  15. Zhou SR, Whitaker JN, Wood DD, Moscarello MA (1993) Immunological analysis of the amino terminal and the C8 isomer of human myelin basic protein. J Neuroimmunol 46:91–96

    Article  CAS  PubMed  Google Scholar 

  16. Haag S, Schneider N, Mason DE, Tuncel J, Andersson IE, Peters EC, Burkhardt H, Holmdahl R (2014) Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol 66:1440–1449

    Article  CAS  PubMed  Google Scholar 

  17. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ling S, Cline EN, Haug TS, Fox DA, Holoshitz J (2013) Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum 65:618–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Loos T, Mortier A, Gouwy M, Ronsse I, Put W, Van Lenaerts JP, Damme J, Proost P (2008) Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood 112:2648–2656

    Article  CAS  PubMed  Google Scholar 

  20. Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, Dillen C, Ronsse I, Conings R, Struyf S, Opdenakker G, Maudgal PC, Van Damme J (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 205:2085–2097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Moelants EA, Mortier A, Grauwen K, Ronsse IV, Damme J, Proost P (2013) Citrullination of TNF-alpha by peptidylarginine deiminases reduces its capacity to stimulate the production of inflammatory chemokines. Cytokine 61:161–167

    Article  CAS  PubMed  Google Scholar 

  22. Bradford CM, Ramos I, Cross AK, Haddock G, McQuaid S, Nicholas AP, Woodroofe MN (2014) Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol 273:85–95

    Article  CAS  PubMed  Google Scholar 

  23. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271:30709–30716

    Article  CAS  PubMed  Google Scholar 

  24. Shelef MA, Bennin DA, Mosher DF, Huttenlocher A (2012) Citrullination of fibronectin modulates synovial fibroblast behavior. Arthritis Res Ther 14:R240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Van Steendam K, Tilleman KD, Ceuleneer MD, Keyser F, Elewaut D, Deforce D (2010) Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res Ther 12:R132

    Article  PubMed Central  PubMed  Google Scholar 

  26. U KP, Subramanian V, Nicholas AP, Thompson PR, Ferretti P (2014) Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway. Biochim Biophys Acta 1843:1162–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matsuo K, Xiang Y, Nakamura H, Masuko K, Yudoh K, Noyori K, Nishioka K, Saito T, Kato T (2006) Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach. Arthritis Res Ther 8:R175

    Article  PubMed Central  PubMed  Google Scholar 

  28. Shoda H, Fujio K, Shibuya M, Okamura T, Sumitomo S, Okamoto A, Sawada T, Yamamoto K (2011) Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis. Arthritis Res Ther 13:R191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Dellaripa PF, Oddis CV, Ascherman DP (2013) Identification of citrullinated hsp90 isoforms as novel autoantigens in rheumatoid arthritis-associated interstitial lung disease. Arthritis Rheum 65:869–879

    Article  CAS  PubMed  Google Scholar 

  30. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, Kinloch A, Culshaw S, Potempa J, Venables PJ (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 62:2662–2672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, Joshua V, Engstrom M, Snir O, Israelsson L, Catrina AI, Wardemann H, Corti D, Meffre E, Klareskog L, Malmstrom V (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210:445–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Brink M, Hansson M, Mathsson L, Jakobsson PJ, Holmdahl R, Hallmans G, Stenlund H, Ronnelid J, Klareskog L, Rantapaa-Dahlqvist S (2013) Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum 65:899–910

    Article  CAS  PubMed  Google Scholar 

  33. Dwivedi N, Radic M (2014) Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann Rheum Dis 73:483–491

    Article  CAS  PubMed  Google Scholar 

  34. Hagiwara T, Nakashima K, Hirano H, Senshu T, Yamada M (2002) Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun 290:979–983

    Article  CAS  PubMed  Google Scholar 

  35. Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180:1895–1902

    Article  CAS  PubMed  Google Scholar 

  36. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  37. Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kaplan MJ, Radic M (2012) Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189:2689–2695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207:1853–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Munks MW, McKee AS, Macleod MK, Powell RL, Degen JL, Reisdorph NA, Kappler JW, Marrack P (2010) Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116:5191–5199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Li Y, Liu B, Fukudome EY, Lu J, Chong W, Jin G, Liu Z, Velmahos GC, Demoya M, King DR, Alam HB (2011) Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock. Surgery 150:442–451

    Article  PubMed Central  PubMed  Google Scholar 

  44. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod KT, Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer BL (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33:2032–2040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y, Wagner DD (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 110:8674–8679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. van Rossum AP, Limburg PC, Kallenberg CG (2005) Activation, apoptosis, and clearance of neutrophils in Wegener’s granulomatosis. Ann N Y Acad Sci 1051:1–11

    Article  PubMed  Google Scholar 

  47. Dwivedi N, Upadhyay J, Neeli I, Khan S, Pattanaik D, Myers L, Kirou KA, Hellmich B, Knuckley B, Thompson PR, Crow MK, Mikuls TR, Csernok E, Radic M (2012) Felty’s syndrome autoantibodies bind to deiminated histones and neutrophil extracellular chromatin traps. Arthritis Rheum 64:982–992

    Article  CAS  PubMed  Google Scholar 

  48. Pratesi F, Dioni I, Tommasi C, Alcaro MC, Paolini I, Barbetti F, Boscaro F, Panza F, Puxeddu I, Rovero P, Migliorini P (2013) Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann Rheum Dis 73:1414–1422

    Article  PubMed  Google Scholar 

  49. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M, Shealy D, Denny MF, Plumas J, Chaperot L, Kretzler M, Bruce AT, Kaplan MJ (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187:538–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3:73ra19

    Article  PubMed Central  PubMed  Google Scholar 

  51. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20

    Article  PubMed Central  PubMed  Google Scholar 

  52. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, Thompson P, Chen P, Fox DA, Pennathur S, Kaplan MJ (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5:178ra140

    Article  Google Scholar 

  53. Strollo R, Ponchel F, Malmstrom V, Rizzo P, Bombardieri M, Wenham CY, Landy R, Perret D, Watt F, Corrigall VM, Winyard PG, Pozzilli P, Conaghan PG, Panayi GS, Klareskog L, Emery P, Nissim A (2013) Autoantibodies to posttranslationally modified type II collagen as potential biomarkers for rheumatoid arthritis. Arthritis Rheum 65:1702–1712

    Article  CAS  PubMed  Google Scholar 

  54. Campbell AM, Kashgarian M, Shlomchik MJ (2012) NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 4:157ra141

    Article  PubMed Central  PubMed  Google Scholar 

  55. Tsuboi N, Ernandez T, Li X, Nishi H, Cullere X, Mekala D, Hazen M, Kohl J, Lee DM, Mayadas TN (2011) Regulation of human neutrophil Fcgamma receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis Rheum 63:467–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. McElwee JL, Mohanan S, Horibata S, Sams KL, Anguish LJ, McLean D, Cvitas I, Wakshlag JJ, and Coonrod S (2014) PAD2 overexpression in transgenic mice promotes spontaneous skin neoplasia. Cancer Res. doi:10.1158/0008-5472.CAN-14-0749

  57. Happel N, Doenecke D (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431:1–12

    Article  CAS  PubMed  Google Scholar 

  58. Harshman SW, Young NL, Parthun MR, Freitas MA (2013) H1 histones: current perspectives and challenges. Nucleic Acids Res 41:9593–9609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Dwivedi N, Neeli I, Schall N, Wan H, Desiderio DM, Csernok E, Thompson PR, Dali H, Briand JP, Muller S, Radic M (2014) Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity. FASEB J 28:2840–2851

    Article  CAS  PubMed  Google Scholar 

  60. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108

    Article  CAS  PubMed  Google Scholar 

  61. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  CAS  PubMed  Google Scholar 

  63. Zhang X, Gamble MJ, Stadler S, Cherrington BD, Causey CP, Thompson PR, Roberson MS, Kraus WL, Coonrod SA (2011) Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells. PLoS Genet 7:e1002112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kan R, Jin M, Subramanian V, Causey CP, Thompson PR, Coonrod SA (2012) Potential role for PADI-mediated histone citrullination in preimplantation development. BMC Dev Biol 12:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Stadler SC, Vincent CT, Fedorov VD, Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang X, Garcia BA, Condeelis JS, Brown AM, Coonrod SA, Allis CD (2013) Dysregulation of PAD4-mediated citrullination of nuclear GSK3beta activates TGF-beta signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A 110:11851–11856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y, Matsuda K (2012) Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 3:676

    Article  PubMed  Google Scholar 

  67. Wang Y, Li P, Wang S, Hu J, Chen XA, Wu J, Fisher M, Oshaben K, Zhao N, Gu Y, Wang D, Chen G (2012) Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 287:25941–25953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Andrade F, Darrah E, Gucek M, Cole RN, Rosen A, Zhu X (2010) Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis Rheum 62:1630–1640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, Luo Y, Levitt B, Glogowska M, Chandra P, Kulik L, Robinson WH, Arend WP, Thompson PR, Holers VM (2011) N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 186:4396–4404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, Hodgin JB, Eitzman DT, Thompson PR, Kaplan MJ (2013) Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 123:2981–2993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wei L, Wasilewski E, Chakka SK, Bello AM, Moscarello MA, Kotra LP (2013) Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. J Med Chem 56:1715–1722

    Article  CAS  PubMed  Google Scholar 

  72. Chumanevich AA, Causey CP, Knuckley BA, Jones JE, Poudyal D, Chumanevich AP, Davis T, Matesic LE, Thompson PR, Hofseth LJ (2011) Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol 300:G929–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Van Moelants EA, Damme J, Proost P (2011) Detection and quantification of citrullinated chemokines. PLoS One 6:e28976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the SM’s laboratory is financially supported by the French Centre National de la Recherche Scientifique, Région Alsace, Laboratory of Excellence Medalis (ANR-10-LABX-0034), EquipEx program I2MC (ANR-11-EQPX-022), Initiative of Excellence (IdEx), Strasbourg University, and ImmuPharma France. Research in the MR’s laboratory is financially supported by The Lupus Research Institute of New York and the ORR Fund of Memphis, TN. We gratefully acknowledge the kind gift of the anti-PAD4 monoclonal antibody from Dr. Katsuhiko Nakashima of the National Cancer Center Institute of Japan. The authors thank Dr. Gilbert de Murcia, CNRS, who took the original images shown in Fig. 3b. We are grateful to Dr. Indira Neeli and Dr. Teruki Hagiwara for their helpful comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Radic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muller, S., Radic, M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clinic Rev Allerg Immunol 49, 232–239 (2015). https://doi.org/10.1007/s12016-014-8459-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8459-2

Keywords

Navigation