Skip to main content
Log in

Hematopoietic Stem Cell Homing to Injured Tissues

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The use of stem cells is considered a promising therapy for tissue regeneration and repair, particularly for tissues injured through degeneration, ischemia and inflammation. Bone marrow (BM)-derived haematopoietic stem cells (HSCs) are rare populations of multipotent stem cells that have been identified as promising potential candidates for treating a broad range of conditions. Although research into the use of stem cells for regenerative medicine is on a steep upward slope, clinical success has not been as forthcoming. This has been primarily attributed to a lack of information on the basic biology of stem cells, which remains insufficient to justify clinical studies. In particular, while our knowledge on the molecular adhesive mechanisms and local environmental factors governing stem cell homing to BM is detailed, our understanding of the mechanisms utilized at injured sites is very limited. For instance, it is unclear whether mechanisms used at injured sites are location specific or whether this recruitment can be modulated for therapeutic purposes. In addition, it has recently been suggested that platelets may play an important role in stem cell recruitment to sites of injury. A better understanding of the mechanisms used by stem cells during tissue homing would allow us to develop strategies to improve recruitment of these rare cells. This review will focus on the status of our current understanding of stem cell homing to injured tissues, the role of platelets and directions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari, G., Cusella-De Angelis, G., Coletta, M., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  3. Kale, S., Karihaloo, A., Clark, P. R., Kashgarian, M., Krause, D. S., & Cantley, L. G. (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. Journal of Clinical Investigation, 112, 42–49.

    PubMed  CAS  Google Scholar 

  4. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Natural Medicines, 6, 1229–1234.

    Article  CAS  Google Scholar 

  5. Herzog, E. L., Chai, L., & Krause, D. S. (2003). Plasticity of marrow-derived stem cells. Blood, 102, 3483–3493.

    Article  PubMed  CAS  Google Scholar 

  6. Houlihan, D. D., & Newsome, P. N. (2008). Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology, 135, 438–450.

    Article  PubMed  CAS  Google Scholar 

  7. Ehnert, S., Glanemann, M., Schmitt, A., et al. (2009). The possible use of stem cells in regenerative medicine: dream or reality? Langenbeck's archives of surgery/Deutsche Gesellschaft fur Chirurgie.

  8. Strauer, B. E., & Kornowski, R. (2003). Stem cell therapy in perspective. Circulation, 107, 929–934.

    Article  PubMed  Google Scholar 

  9. Till, J. E., & Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.

    Article  PubMed  CAS  Google Scholar 

  10. Till, J. E., McCulloch, E. A., & Siminovitch, L. (1964). A Stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences of the United States of America, 51, 29–36.

    Article  PubMed  CAS  Google Scholar 

  11. Challen, G. A., Boles, N., Lin, K.-Y. K., & Goodell, M. A. (2009). Mouse hematopoietic stem cell identification and analysis. Cytometry. Part A, 75A, 14–24.

    Article  Google Scholar 

  12. Massberg, S., Konrad, I., Schurzinger, K., et al. (2006). Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. The Journal of Experimental Medicine, 203, 1221–1233.

    Article  PubMed  CAS  Google Scholar 

  13. Wognum, A. W., Eaves, A. C., & Thomas, T. E. (2003). Identification and isolation of hematopoietic stem cells. Archives of Medical Research, 34, 461–475.

    Article  PubMed  CAS  Google Scholar 

  14. Balazs, A. B., Fabian, A. J., Esmon, C. T., & Mulligan, R. C. (2006). Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood, 107, 2317–2321.

    Article  PubMed  CAS  Google Scholar 

  15. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  16. Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F., & Shaper, J. H. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. Journal of Immunology, 133, 157–165.

    CAS  Google Scholar 

  17. Zanjani, E. D., Alemeida-Porada, G., Livingston, A. G., Flake, A. W., & Ogawa, M. (1998). Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Experimental Hematology, 26, 353–360.

    PubMed  CAS  Google Scholar 

  18. Huss, R., Günther, W., Schumm, M., Ottinger, H., Grosse-Wilde, H., & Kolb, H. J. (1997). CD34-Negative Hematopoietic Stem Cells Isolated from Human Peripheral Blood Cells as Ultimate Precursors of Hematopoietic Progenitors. Transfusion Medicine and Hemotherapy, 24, 404–409.

    Article  Google Scholar 

  19. Nakamura, Y., Ando, K., Chargui, J., et al. (1999). Ex Vivo generation of CD34+ cells from CD34- hematopoietic cells. Blood, 94, 4053–4059.

    PubMed  CAS  Google Scholar 

  20. Gao, Z., Fackler, M. J., Leung, W., et al. (2001). Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34- cell preparations. Experimental Hematology, 29, 910–921.

    Article  PubMed  CAS  Google Scholar 

  21. Osawa, M., Hanada, K., Hamada, H., & Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273, 242–245.

    Article  PubMed  CAS  Google Scholar 

  22. Dalakas, E., Newsome, P. N., Liu, Q., et al. (2003). Mobilization of pluripotent haematopoietic stem cells occurs in alcoholic hepatitis and is associated with an improved clinical outcome. In. 55th Annual Meeting of the American Association for the Study of Liver Diseases. Hepatology, 284A.

  23. Lemoli, R. M., Catani, L., Talarico, S., et al. (2006). Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells, 24, 2817–2825.

    Article  PubMed  CAS  Google Scholar 

  24. Sipkins, D. A., Wei, X., Wu, J. W., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.

    Article  PubMed  CAS  Google Scholar 

  25. Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., & Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 105, 3793–3801.

    Article  PubMed  CAS  Google Scholar 

  26. Petit, I., Szyper-Kravitz, M., Nagler, A., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3, 687–694.

    Article  PubMed  CAS  Google Scholar 

  27. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicines, 10, 858–864.

    Article  CAS  Google Scholar 

  28. Kucia, M., Ratajczak, J., Reca, R., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2004). Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells, Molecules & Diseases, 32, 52–57.

    Article  CAS  Google Scholar 

  29. Hattori, K., Heissig, B., Tashiro, K., et al. (2001). Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, 97, 3354–3360.

    Article  PubMed  CAS  Google Scholar 

  30. Togel, F., Isaac, J., Hu, Z., Weiss, K., & Westenfelder, C. (2005). Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney International, 67, 1772–1784.

    Article  PubMed  Google Scholar 

  31. Terada, R., Yamamoto, K., Hakoda, T., et al. (2003). Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Invest, 83, 665–672.

    Article  PubMed  CAS  Google Scholar 

  32. Mehrad, B., Burdick, M. D., Zisman, D. A., Keane, M. P., Belperio, J. A., & Strieter, R. M. (2007). Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochemical and Biophysical Research Communications, 353, 104–108.

    Article  PubMed  CAS  Google Scholar 

  33. Zannettino, A. C., Farrugia, A. N., Kortesidis, A., et al. (2005). Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Research, 65, 1700–1709.

    Article  PubMed  CAS  Google Scholar 

  34. Hattori, K., Dias, S., Heissig, B., et al. (2001). Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of Experimental Medicine, 193, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  35. Kollet, O., Shivtiel, S., Chen, Y. Q., et al. (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Journal of Clinical Investigation, 112, 160–169.

    PubMed  CAS  Google Scholar 

  36. Papayannopoulou, T., & Nakamoto, B. (1993). Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proceedings of the National Academy of Sciences of the United States of America, 90, 9374–9378.

    Article  PubMed  CAS  Google Scholar 

  37. Avigdor, A., Goichberg, P., Shivtiel, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.

    Article  PubMed  CAS  Google Scholar 

  38. Xia, L., McDaniel, J. M., Yago, T., Doeden, A., & McEver, R. P. (2004). Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood, 104, 3091–3096.

    Article  PubMed  CAS  Google Scholar 

  39. Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2001). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98, 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  40. Nakano, Y., Kondo, T., Matsuo, R., Murata, S., Fukunaga, K., & Ohkohchi, N. (2009). Prevention of leukocyte activation by the neutrophil elastase inhibitor, sivelestat, in the hepatic microcirculation after ischemia-reperfusion. The Journal of Surgical Research, 155, 311–317.

    Article  PubMed  CAS  Google Scholar 

  41. Ferry, G., Lonchampt, M., Pennel, L., de Nanteuil, G., Canet, E., & Tucker, G. C. (1997). Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Letters, 402, 111–115.

    Article  PubMed  CAS  Google Scholar 

  42. Ramirez, P., Rettig, M. P., Uy, G. L., et al. (2009). BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood, 114, 1340–1343.

    Article  PubMed  CAS  Google Scholar 

  43. Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews. Immunology, 7, 678–689.

    Article  PubMed  CAS  Google Scholar 

  44. Turner, M. L., McIlwaine, K., Anthony, R. S., & Parker, A. C. (1995). Differential expression of cell adhesion molecules by human hematopoietic progenitor cells from bone marrow and mobilized peripheral blood. Stem Cells, 13, 311–316.

    Article  PubMed  CAS  Google Scholar 

  45. Kobayashi, M., Imamura, M., Sakurada, K., et al. (1994). Expression of adhesion molecules on human hematopoietic progenitor cells at different maturation stages. Stem Cells, 12, 316.

    Article  PubMed  CAS  Google Scholar 

  46. Mazo, I. B., Gutierrez-Ramos, J., Frenette, P. S., Hynes, R. O., Wagner, D. D., & von Andrian, U. H. (1998). Hematopoietic progenitor cell rolling in bone marrow microvessels: Parrallel contributions by endothelial selectins and vascular cell adhesion molecule 1. The Journal of Experimental Medicine, 188, 465–474.

    Article  PubMed  CAS  Google Scholar 

  47. Frenette, P. S., Subbarao, S., Mazo, I. B., von Andrian, U. H., & Wagner, D. D. (1998). Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 95, 14423–14428.

    Article  PubMed  CAS  Google Scholar 

  48. Peled, A., Kollet, O., Ponomaryov, T., et al. (2000). The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 95, 3289–3296.

    PubMed  CAS  Google Scholar 

  49. Hidalgo, A., & Frenette, P. S. (2005). Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood, 105, 567–575.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, S., Shpall, E., Willerson, J. T., & Yeh, E. T. (2007). Fusion of human hematopoietic progenitor cells and murine cardiomyocytes is mediated by alpha 4 beta 1 integrin/vascular cell adhesion molecule-1 interaction. Circulation Research, 100, 693–702.

    Article  PubMed  CAS  Google Scholar 

  51. Kavanagh, D. P., Durant, L. E., Crosby, H. A., et al. (2009). Haematopoietic stem cell recruitment to injured murine liver sinusoids depends on {alpha}4{beta}1 integrin/VCAM-1 interactions. Gut, 59, 79–87.

    Article  Google Scholar 

  52. Wong, J., Johnston, B., Lee, S. S., et al. (1997). A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. Journal of Clinical Investigation, 99, 2782–2790.

    Article  PubMed  CAS  Google Scholar 

  53. Clark, R. A., Alon, R., & Springer, T. A. (1996). CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. The Journal of Cell Biology, 134, 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  54. Papayannopoulou, T., Priestley, G. V., Nakamoto, B., Zafiropoulos, V., & Scott, L. M. (2001). Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood, 98, 2403–2411.

    Article  PubMed  CAS  Google Scholar 

  55. Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G. V., & Wolf, N. S. (1995). The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proceedings of the National Academy of Sciences of the United States of America, 92, 9647–9651.

    Article  PubMed  CAS  Google Scholar 

  56. Jin, H., Aiyer, A., Su, J., et al. (2006). A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. Journal of Clinical Investigation, 116, 652–662.

    Article  PubMed  CAS  Google Scholar 

  57. Kimura, K., Nagaki, M., Kakimi, K., et al. (2008). Critical role of CD44 in hepatotoxin-mediated liver injury. Journal of Hepatology, 48, 952–961.

    Article  PubMed  CAS  Google Scholar 

  58. McDonald, B., McAvoy, E. F., Lam, F., et al. (2008). Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. The Journal of Experimental Medicine, 205, 915–927.

    Article  PubMed  CAS  Google Scholar 

  59. Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45, 514–522.

    Article  PubMed  CAS  Google Scholar 

  60. Kavanagh, D. P. J., Zhao, Y., Yemm, A. I., & Kalia, N. (2010). Mechansisms of hematopoeitic stem cell recruitment to injured Gut and Muscular microcircualtion [abstract]. Microcirculation, 17, 458–493.

    Google Scholar 

  61. Zhao, Y., Kavanagh, D. P., Thysse, J., Frampton, J., & Kalia, N. (2008). Factors contributing to haematopoietic stem cell recruitment to murine cremaster microcirculation [abstract PC71]. Microcirculation, 15, 633–687.

    Article  Google Scholar 

  62. White, R. L., Mann, J., Kavanagh, D. P. J., Savage, C. O. S., & Kalia, N. (2010). Modulating the adhesion of Hematopoietic stem cells to ischemia-reperfusion injured kidney sections and identifictaion of the molecular mechanisms governing their adhesion [abstract]. Microcirculation, 17, 458–493.

    Google Scholar 

  63. Rocha, V., & Broxmeyer, H. E. (2010). New approaches for improving engraftment after cord blood transplantation. Biology of Blood and Marrow Transplantation, 16, S126–S132.

    Article  PubMed  Google Scholar 

  64. Zaruba, M. M., Theiss, H. D., Vallaster, M., et al. (2009). Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell, 4, 313–323.

    Article  PubMed  CAS  Google Scholar 

  65. Segers, V. F. M., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116, 1683–1692.

    Article  PubMed  CAS  Google Scholar 

  66. Zaruba, M. M., & Franz, W. M. (2010). Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opinion on Biological Therapy, 10, 321–335.

    Article  PubMed  CAS  Google Scholar 

  67. Stroo, I., Stokman, G., Teske, G. J., Florquin, S., & Leemans, J. C. (2009). Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis. Nephrology, Dialysis, Transplantation, 24, 2082–2088.

    Article  PubMed  CAS  Google Scholar 

  68. Kavanagh, D. P. J. (2010). Molecular events governing hematopoietic stem cell recruitment in vivo in murine liver following Ischemia-reperfusion injury [PhD Thesis]: University of Birmingham. Accessible from http://etheses.bham.ac.uk/363/1/Kavanagh09PhD.pdf

  69. Brenner, S., Whiting-Theobald, N., Kawai, T., et al. (2004). CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells, 22, 1128–1133.

    Article  PubMed  CAS  Google Scholar 

  70. Tarnowski, M., Liu, R., Wysoczynski, M., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2010). CXCR7: a new SDF-1-binding receptor in contrast to normal CD34(+) progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. European Journal of Haematology, 85, 472–483.

    Article  PubMed  CAS  Google Scholar 

  71. Libert, F., Passage, E., Parmentier, M., Simons, M.-J., Vassart, G., & Mattei, M.-G. (1991). Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor. Genomics, 11, 225–227.

    Article  PubMed  CAS  Google Scholar 

  72. Thelen, M., & Thelen, S. (2008). CXCR7, CXCR4 and CXCL12: an eccentric trio? Journal of Neuroimmunology, 198, 9–13.

    Article  PubMed  CAS  Google Scholar 

  73. Hartmann, T. N., Grabovsky, V., Pasvolsky, R., et al. (2008). A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. Journal of Leukocyte Biology, 84, 1130–1140.

    Article  PubMed  CAS  Google Scholar 

  74. Sierro, F., Biben, C., Martinez-Munoz, L., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 104, 14759–14764.

    Article  PubMed  CAS  Google Scholar 

  75. Chavakis, E., Aicher, A., Heeschen, C., et al. (2005). Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. The Journal of Experimental Medicine, 201, 63–72.

    Article  PubMed  CAS  Google Scholar 

  76. Ryzhov, S., Solenkova, N. V., Goldstein, A. E., et al. (2008). Adenosine receptor-mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circulation Research, 102, 356–363.

    Article  PubMed  CAS  Google Scholar 

  77. Schoenhard, J. A., & Hatzopoulos, A. K. (2010). Stem Cell Therapy: Pieces of the Puzzle. Journal of cardiovascular translational research, 3, 49–60.

    Article  PubMed  Google Scholar 

  78. Sarkar, D., Vemula, P. K., Teo, G. S., et al. (2008). Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjugate Chemistry, 19, 2105–2109.

    Article  PubMed  CAS  Google Scholar 

  79. Varga-Szabo, D., Pleines, I., & Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 403–412.

    Article  PubMed  CAS  Google Scholar 

  80. Langer, H., May, A. E., Daub, K., et al. (2006). Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circulation Research, 98, e2–e10.

    Article  PubMed  CAS  Google Scholar 

  81. de Boer, H. C., Verseyden, C., Ulfman, L. H., et al. (2006). Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1653–1659.

    Article  PubMed  Google Scholar 

  82. Stellos, K., Langer, H., Daub, K., et al. (2008). Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation, 117, 206–215.

    Article  PubMed  CAS  Google Scholar 

  83. Stellos, K., Bigalke, B., Langer, H., et al. (2009). Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. European Heart Journal, 30, 584–593.

    Article  PubMed  CAS  Google Scholar 

  84. Daub, K., Langer, H., Seizer, P., et al. (2006). Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. The FASEB Journal, 20, 2559–2561.

    Article  PubMed  CAS  Google Scholar 

  85. Peled, A., Grabovsky, V., Habler, L., et al. (1999). The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. Journal of Clinical Investigation, 104, 1199–1211.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DPJK is supported by the British Heart Foundation (PG/08/043). The work from our group detailed in this article was supported by grants from the British Heart Foundation (PG/08/043) and The Royal Society.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the preparation or content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, D.P.J., Kalia, N. Hematopoietic Stem Cell Homing to Injured Tissues. Stem Cell Rev and Rep 7, 672–682 (2011). https://doi.org/10.1007/s12015-011-9240-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9240-z

Keywords

Navigation