Skip to main content

Advertisement

Log in

Hematopoietic Stem Cell Aging: Wrinkles In Stem Cell Potential

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSC) continuously replenish the blood and immune systems. Their activity must be sustained throughout life to support optimal immune responses. It has been thought that stem cells may be somewhat protected from age because of their perpetual requirement to replenish the blood, however studies over the past 10 years have revealed dramatic changes in HSC function and phenotype with respect to age. When the number of HSC within murine bone marrow is measured, an increase in concentration and absolute number of HSC within the bone marrow is observed as the animal ages, paralleled with increased homogeneity of stem cell marker expression. Results from transplantation studies demonstrate that although there is a decline in hematopoietic output on a per-cell basis, the increase in number provides sufficient, yet abnormal, blood production throughout the lifespan of the animal. HSC may play a role in immunosenescence through cell-fate decisions leading to an overproduction of myeloid cells and an underproduction of lymphocytes. When examining gene expression of aged HSC, recent studies have highlighted several key factors contributing to increased inflammation, stress response and genomic instability. Here, we will review the general phenotype observed with aging of the hematopoietic system, focusing on the HSC, and compile recent expression profiling efforts that have examined HSC aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.

    Article  PubMed  CAS  Google Scholar 

  2. Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    Article  PubMed  CAS  Google Scholar 

  3. Kopp, H. G., Avecilla, S. T., Hooper, A. T., & Rafii, S. (2005). The bone marrow vascular niche: Home of HSC differentiation and mobilization. Physiology (Bethesda), 20, 349–356.

    CAS  Google Scholar 

  4. Weng, N. P. (2006). Aging of the immune system: How much can the adaptive immune system adapt? Immunity, 24, 495–499.

    Article  PubMed  CAS  Google Scholar 

  5. Maciejewski, J. P., & Risitano, A. (2003). Hematopoietic stem cells in aplastic anemia. Archives of Medical Research, 34, 520–527.

    Article  PubMed  CAS  Google Scholar 

  6. Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., et al. (2007). Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanism of Ageing and Development, 128, 92–105.

    Article  CAS  Google Scholar 

  7. Harrison, D. E. (1983). Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. Journal of Experimental Medicine, 157, 1496–1504.

    Article  PubMed  CAS  Google Scholar 

  8. de Haan, G., & Van Zant, G. (1999). Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood, 93, 3294–3301.

    PubMed  Google Scholar 

  9. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A., & Weissman, I. L. (1996). The aging of hematopoietic stem cells. Nature Medicine, 2, 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  10. Sudo, K., Ema, H., Morita, Y., & Nakauchi, H. (2000). Age-associated characteristics of murine hematopoietic stem cells. Journal of Experimental Medicine, 192, 1273–1280.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, M., Moon, H. B., & Spangrude, G. J. (2003). Major age-related changes of mouse hematopoietic stem/progenitor cells. Annals of The New York Academy of Sciences, 996, 195–208.

    Article  PubMed  Google Scholar 

  12. Chambers, S. M., Shaw, C. A., Gatza, C., Fisk, C. J., Donehower, L. A., & Goodell, M. A. (2007). Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biology, 5(8), e201. Retrieved from http://dx.doi.org/10.1371/journal.pbio.0050201

    Article  PubMed  CAS  Google Scholar 

  13. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  14. Pearce, D. J., Anjos-Afonso, F., Ridler, C. M., Eddaoudi, A., & Bonnet, D. (2007). Age-dependent increase in side population distribution within hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells, 25, 828–835.

    Article  PubMed  CAS  Google Scholar 

  15. Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  16. Rossi, D. J., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell aging: Mechanism and consequence. Experimental Gerontology, 42(5), 385–390.

    Article  PubMed  CAS  Google Scholar 

  17. Pearce, D. J., Anjos-Afonso, F., Ridler, C. M., Eddaoudi, A., & Bonnet, D. (2006). Age dependent increase in SP distribution within Hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells, 25(4), 828–835.

    Article  PubMed  CAS  Google Scholar 

  18. Van Zant, G., & Liang, Y. (2003). The role of stem cells in aging. Experimental Hematology, 31, 659–672.

    Article  PubMed  CAS  Google Scholar 

  19. Harrison, D. E., Jordan, C. T., Zhong, R. K., & Astle, C. M. (1993). Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Experimental Hematology, 21, 206–219.

    PubMed  CAS  Google Scholar 

  20. Harrison, D. E., Astle, C. M., & Delaittre, J. A. (1978). Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. Journal of Experimental Medicine, 147, 1526–1531.

    Article  PubMed  CAS  Google Scholar 

  21. Harrison, D. E. (1979). Mouse erythropoietic stem cell lines function normally 100 months: loss related to number of transplantations. Mechanism of Ageing and Development, 9, 427–433.

    Article  CAS  Google Scholar 

  22. Ross, E. A., Anderson, N., & Micklem, H. S. (1982). Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. Journal of Experimental Medicine, 155, 432–444.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison, D. E. (1980). Competitive repopulation: A new assay for long-term stem cell functional capacity. Blood, 55, 77–81.

    PubMed  CAS  Google Scholar 

  24. Harrison, D. E., & Astle, C. M. (1982). Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. Journal of Experimental Medicine, 156, 1767–1779.

    Article  PubMed  CAS  Google Scholar 

  25. Rossi, D. J., Bryder, D., Zahn, J. M., Ahlenius, H., Sonu, R., Wagers, A. J., et al. (2005). Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of The National Academy of Sciences of The United States of America, 102, 9194–9199.

    Article  PubMed  CAS  Google Scholar 

  26. Corey, S. J., Minden, M. D., Barber, D. L., Kantarjian, H., Wang, J. C., & Schimmer, A. D. (2007). Myelodysplastic syndromes: the complexity of stem-cell diseases. Nature reviews Cancer, 7, 118–129.

    Article  PubMed  CAS  Google Scholar 

  27. Tiu, R., Gondek, L., O’Keefe, C., & Maciejewski, J. P. (2007). Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia, 21, 1648–1657.

    Article  PubMed  CAS  Google Scholar 

  28. Kufe, D. W., Holland, J. F., Frei, E., & American Cancer Society. (2003). Cancer medicine 6. Hamilton, Ontario: BC Decker.

  29. Nishino, H. T., & Chang, C. C. (2005). Myelodysplastic syndromes: Clinicopathologic features, pathobiology, and molecular pathogenesis. Archives of Pathology and Laboratory Medicine, 129, 1299–1310.

    PubMed  CAS  Google Scholar 

  30. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.

    Article  PubMed  CAS  Google Scholar 

  31. Visnjic, D., Kalajzic, Z., Rowe, D. W., Katavic, V., Lorenzo, J., & Aguila, H. L. (2004). Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103, 3258–3264.

    Article  PubMed  CAS  Google Scholar 

  32. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  33. Justesen, J., Stenderup, K., Ebbesen, E. N., Mosekilde, L., Steiniche, T., & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2, 165–171.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, J., Dai, J., Lu, Y., Yao, Z., O’Brien, C. A., Murtha J. M., et al. (2004). In vivo visualization of aging-associated gene transcription: evidence for free radical theory of aging. Experimental Gerontology, 39, 239–247.

    Article  PubMed  CAS  Google Scholar 

  35. de Haan, G., & Van Zant, G. (1997). Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. Journal of Experimental Medicine, 186, 529–536.

    Article  PubMed  Google Scholar 

  36. Henckaerts, E., Langer, J. C., & Snoeck, H. W. (2004). Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood, 104, 374–379.

    Article  PubMed  CAS  Google Scholar 

  37. de Haan, G., Nijhof, W., & Van Zant, G. (1997). Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: Correlation between lifespan and cycling activity. Blood, 89, 1543–1550.

    PubMed  Google Scholar 

  38. Liang, Y., & Van Zant, G. (2003). Genetic control of stem-cell properties and stem cells in aging. Current Opinion in Hematology, 10, 195–202.

    Article  PubMed  Google Scholar 

  39. Langer, J. C., Henckaerts, E., Orenstein, J., & Snoeck, H. W. (2004). Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function. Journal of Experimental Medicine, 199, 5–14.

    Article  PubMed  CAS  Google Scholar 

  40. Henckaerts, E., Langer, J. C., Orenstein, J., & Snoeck, H. W. (2004). The positive regulatory effect of TGF-beta2 on primitive murine hemopoietic stem and progenitor cells is dependent on age, genetic background, and serum factors. Journal of Immunology, 173, 2486–2493.

    CAS  Google Scholar 

  41. Bevilacqua, M. P., & Nelson, R. M. (1993). Selectins. Journal of Clinical Investigation, 91, 379–387.

    Article  PubMed  CAS  Google Scholar 

  42. Tedder, T. F., Steeber, D. A., Chen, A., & Engel, P. (1995). The selectins: vascular adhesion molecules. FASEB J, 9, 866–873.

    PubMed  CAS  Google Scholar 

  43. Geng, J. G., Chen, M., & Chou, K. C. (2004). P-selectin cell adhesion molecule in inflammation, thrombosis, cancer growth and metastasis. Current Medicinal Chemistry, 11, 2153–2160.

    PubMed  CAS  Google Scholar 

  44. Chen, M., & Geng, J. G. (2006). P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54, 75–84.

    Article  CAS  Google Scholar 

  45. Rosen, S. D., & Bertozzi, C. R. (1994). The selectins and their ligands. Current Opinion in Cell Biology, 6, 663–673.

    Article  PubMed  CAS  Google Scholar 

  46. Blann, A. D., Nadar, S. K., & Lip, G. Y. (2003). The adhesion molecule P-selectin and cardiovascular disease. European Heart Journal, 24, 2166–2179.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, M., & Geng, J. G. (2006). P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 75–84.

    Article  CAS  Google Scholar 

  48. Gruber, A. D., Gandhi, R., & Pauli, B. U. (1998). The murine calcium-sensitive chloride channel (mCaCC) is widely expressed in secretory epithelia and in other select tissues. Histochemistry and Cell Biology, 110, 43–49.

    Article  PubMed  CAS  Google Scholar 

  49. Leverkoehne, I., Horstmeier, B. A., von Samson-Himmelstjerna, G., Scholte, B. J., & Gruber, A. D. (2002). Real-time RT-PCR quantitation of mCLCA1 and mCLCA2 reveals differentially regulated expression in pre- and postnatal murine tissues. Histochemistry and Cell Biology, 118, 11–17.

    PubMed  CAS  Google Scholar 

  50. Mocchegiani, E., Giacconi, R., Muti, E., Rogo, C., Bracci, M., Muzzioli, M., et al. (2004). Zinc, immune plasticity, aging, and successful aging: role of metallothionein. Annals of The New York Academy of Sciences, 1019, 127–134.

    Article  PubMed  CAS  Google Scholar 

  51. Gustincich, S., & Schneider, C. (1993). Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth & Differentiation, 4, 753–760.

    CAS  Google Scholar 

  52. Bailey, R. W., Aronow, B., Harmony, J. A., & Griswold, M. D. (2002). Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice. Biology of Reproduction, 66, 1042–1053.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki, R., Miyamoto, S., Yasui, Y., Sugie, S., & Tanaka, T. (2007). Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate. BMC Cancer, 7, 84.

    Article  PubMed  CAS  Google Scholar 

  54. Neuschwander-Tetri, B. A., Fimmel, C. J., Kladney, R. D., Wells, L. D., & Talkad, V. (2004). Differential expression of the trypsin inhibitor SPINK3 mRNA and the mouse ortholog of secretory granule protein ZG-16p mRNA in the mouse pancreas after repetitive injury. Pancreas, 28, e104–e111.

    Article  PubMed  Google Scholar 

  55. Venezia, T. A., Merchant, A. A., Ramos, C. A., Whitehouse, N. L., Young, A. S., Shaw, C. A., et al. (2004). Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biology, 2, e301.

    Article  PubMed  CAS  Google Scholar 

  56. Sitia, R., & Molteni, S. N. (2004). Stress, protein (mis)folding, and signaling: the redox connection. Science’s Signal Transduction Knowledge Environment, 2004, pe27.

    Google Scholar 

  57. Yan, W., Frank, C. L., Korth, M. J., Sopher, B. L., Novoa, I., Ron, D., et al. (2002). Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proceedings of The National Academy of Sciences of The United States of America, 99, 15920–15925.

    Article  PubMed  CAS  Google Scholar 

  58. Kyng, K. J., & Bohr, V. A. (2005). Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Research Reviews, 4, 579–602.

    Article  PubMed  CAS  Google Scholar 

  59. Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., et al. (2004). Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature, 431, 997–1002.

    Article  PubMed  CAS  Google Scholar 

  60. Nijnik, A., Woodbine, L., Marchetti, C., Dawson, S., Lambe, T., Liu, C., et al. (2007). DNA repair is limiting for haematopoietic stem cells during ageing. Nature, 447, 686–690.

    Article  PubMed  CAS  Google Scholar 

  61. Yao, Y. G., Ellison, F. M., McCoy, J. P., Chen, J., & Young, N. S. (2007). Age-dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background. Human Molecular Genetics, 16, 286–294.

    Article  PubMed  CAS  Google Scholar 

  62. Rossi, D. J., Bryder, D., Seita, J., Nussenzweig, A., Hoeijmakers, J., & Weissman, I. L. (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature, 447, 725–729.

    Article  PubMed  CAS  Google Scholar 

  63. Scaffidi, P., Gordon, L., & Misteli, T. (2005). The cell nucleus and aging: Tantalizing clues and hopeful promises. PLoS Biology, 3, e395.

    Article  PubMed  CAS  Google Scholar 

  64. Mounkes, L. C., & Stewart, C. L. (2004). Aging and nuclear organization: Lamins and progeria. Current Opinion in Cell Biology, 16, 322–327.

    Article  PubMed  CAS  Google Scholar 

  65. Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312, 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  66. Afilalo, J., Sebag I. A., Chalifour, L. E., Rivas, D., Akter, R., Sharma, K., et al. (2007). Age-related changes in lamin A/C expression in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology. Retrieved from http://dx.doi.org/10.1152/ajpheart.01194.2006

  67. McNairn, A. J., & Gilbert, D. M. (2003). Epigenomic replication: linking epigenetics to DNA replication. BioEssays, 25, 647–656.

    Article  PubMed  CAS  Google Scholar 

  68. Villeponteau, B. (1997). The heterochromatin loss model of aging. Experimental Gerontology, 32, 383–394.

    Article  PubMed  CAS  Google Scholar 

  69. Imai, S., & Kitano, H. (1998). Heterochromatin islands and their dynamic reorganization: A hypothesis for three distinctive features of cellular aging. Experimental Gerontology, 33, 555–570.

    Article  PubMed  CAS  Google Scholar 

  70. Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dolle, M. E., et al. (2006). Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature, 441, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  71. Hatakeyama, C., Anderson, C. L., Beever, C. L., Penaherrera, M. S., Brown, C. J., & Robinson, W. P. (2004). The dynamics of X-inactivation skewing as women age. Clinical Genetics, 66, 327–332.

    Article  PubMed  CAS  Google Scholar 

  72. Donehower, L. A. (2002). Does p53 affect organismal aging? Journal of Cellular Physiology, 192, 23–33.

    Article  PubMed  CAS  Google Scholar 

  73. Morrison, S. J., Hemmati, H. D., Wandycz, A. M., & Weissman, I. L. (1995). The purification and characterization of fetal liver hematopoietic stem cells. Proceedings of The National Academy of Sciences of The United States of America, 92, 10302–10306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goodell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12015_2007_27_MOESM1_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, S.M., Goodell, M.A. Hematopoietic Stem Cell Aging: Wrinkles In Stem Cell Potential. Stem Cell Rev 3, 201–211 (2007). https://doi.org/10.1007/s12015-007-0027-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0027-1

Keywords

Navigation