Skip to main content
Log in

Anti-inflammatory Effects of Propofol on Lipopolysaccharides-Treated Rat Hepatic Kupffer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study is set to explore the role of commonly used intravenous anesthetic propofol on the inflammatory response of rat liver Kupffer cells (KCs) induced by lipopolysaccharides (LPS). The isolated KCs were cultured at the density of 1 × 105/ml, divided into five groups randomly after 48 h culture: group C, control group; group L, KCs were treated with 1 μg/ml LPS for 24 h; groups P1, P2, P3, KCs were pretreated with propofol at low (25 μM), medium (50 μM), high (100 μM) concentration for 2 h, respectively, and then were stimulated with 1 μg/ml LPS for 24 h. The expressions of tumor necrosis factor-α (TNF-α) mRNA and interleukin-1β (IL-1β) mRNA of every group were measured by RT-PCR. Nuclear NF-ΚB p65 was determined by Western blot. The concentrations of IL-1β and TNF-α in supernatant were measured by ELISA. Compared with the group C, TNF-α mRNA and IL-1β mRNA in group L were significantly up-regulated and NF-ΚB p65 was significantly up-regulated after LPS treatment (P < 0.05). Meanwhile, TNF-α and IL-1β were also significantly increased (P < 0.05). With propofol the mRNA expressions of aforementioned inflammatory mediators were significantly down-regulated and NF-ΚB p65 was significantly inhibited in group P2 and P3 (P < 0.05), compared with group L. However, low propofol concentration did not exhibit any effect (group P1, P > 0.05). Propofol at medium and high concentration can counteract the LPS-induced inflammatory response in KCs by regulating NF-ΚB p65 protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamamoto, T., Kaizu, C., Kawasaki, T., Hasegawa, G., Umezu, H., Ohashi, R., et al. (2008). Macrophage colony-stimulating factor is indispensable for repopulation and differentiation of Kupffer cells but not for splenic red pulp macrophages in osteopetrotic (op/op) mice after macrophage depletion. Cell and Tissue Research, 332(2), 245–256.

    Article  CAS  PubMed  Google Scholar 

  2. Ma, W., Wang, Z. R., Shi, L., & Yuan, Y. (2006). Expression of macrophage inflammatory protein-1alpha in Kupffer cells following liver ischemia or reperfusion injury in rats. World Journal of Gastroenterology, 12(24), 3854–3858.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhang, W. F., Wu, C. X., & Gong, J. P. (2013). Effect of kupffer cells on mechanisms of nonalcoholic fatty liver disease. Progress in Physiology, 44(5), 363–366.

    CAS  Google Scholar 

  4. Zigmond, E., Samia-Grinberg, S., Pasmanik-Chor, M., Brazowski, E., Shibolet, O., Halpern, Z., et al. (2014). Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. Journal of Immunology, 193(1), 344–353.

    Article  CAS  Google Scholar 

  5. Hong, I. H., Han, S. Y., Ki, M. R., Moon, Y. M., Park, J. K., You, S. Y., et al. (2013). Inhibition of kupffer cell activity improves transplantation of human adipose-derived stem cells and liver functions. Cell Transplantation, 22(3), 447–459.

    Article  PubMed  Google Scholar 

  6. Feng, M., Wang, Q., Zhang, F., & Lu, L. (2012). Ex vivo induced regulatory T cells regulate inflammatory response of Kupffer cells by TGF-beta and attenuate liver ischemia reperfusion injury. International Immunopharmacology, 12(1), 189–196.

    Article  CAS  PubMed  Google Scholar 

  7. Aziz-Seible, R. S., Lee, S. M., Kharbanda, K. K., McVicker, B. L., & Casey, C. A. (2011). Ethanol feeding potentiates the pro-inflammatory response of Kupffer cells to cellular fibronectin. Alcoholism, Clinical and Experimental Research, 35(4), 717–725.

    Article  CAS  PubMed  Google Scholar 

  8. Budick-Harmelin, N., Dudas, J., Demuth, J., Madar, Z., Ramadori, G., & Tirosh, O. (2008). Triglycerides potentiate the inflammatory response in rat Kupffer cells. Antioxidants & Redox Signaling, 10(12), 2009–2022.

    Article  CAS  Google Scholar 

  9. Engelmann, C., Wallenborn, J., Olthoff, D., Kaisers, U. X., & Ruffert, H. (2014). Propofol versus flunitrazepam for inducing and maintaining sleep in postoperative ICU patients. Indian Journal of Critical Care Medicine, 18(4), 212–219.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Furmaga, H., Park, H. J., Cooperrider, J., Baker, K. B., Johnson, M., Gale, J. T., et al. (2014). Effects of ketamine and propofol on motor evoked potentials elicited by intracranial microstimulation during deep brain stimulation. Frontiers in Systems Neuroscience, 8, 89.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Jin, Y., Zhao, X., Li, H., Wang, Z., & Wang, D. (2013). Effects of sevoflurane and propofol on the inflammatory response and pulmonary function of perioperative patients with one-lung ventilation. Experimental and Therapeutic Medicine, 6(3), 781–785.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sugasawa, Y., Yamaguchi, K., Kumakura, S., Murakami, T., Suzuki, K., Nagaoka, I., et al. (2012). Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. Journal of Anesthesia, 26(1), 62–69.

    Article  PubMed  Google Scholar 

  13. Sung, E. G., Jee, D., Song, I. H., Kim, H. S., Bae, J. H., & Park, S. H. (2005). Propofol attenuates Kupffer cell activation during hypoxia-reoxygenation. Canadian Journal of Anaesthesia, 52(9), 921–926.

    Article  PubMed  Google Scholar 

  14. Gangopadhyay, A., Lazure, D. A., Kelly, T. M., & Thomas, P. (1996). Purification and analysis of an 80-kDa carcinoembryonic antigen-binding protein from Kupffer cells. Archives of Biochemistry and Biophysics, 328(1), 151–157.

    Article  CAS  PubMed  Google Scholar 

  15. Ogiku, M., Kono, H., Hara, M., Tsuchiya, M., & Fujii, H. (2011). Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. The Journal of Pharmacology and Experimental Therapeutics, 339(1), 93–98.

    Article  CAS  PubMed  Google Scholar 

  16. Tapia, G., Santibanez, C., Farias, J., Fuenzalida, G., Varela, P., Videla, L. A., et al. (2010). Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Molecular and Cellular Endocrinology, 323(2), 292–297.

    Article  CAS  PubMed  Google Scholar 

  17. Holt, M. P., Yin, H., & Ju, C. (2010). Exacerbation of acetaminophen-induced disturbances of liver sinusoidal endothelial cells in the absence of Kupffer cells in mice. Toxicology Letters, 194(1–2), 34–41.

    Article  CAS  PubMed  Google Scholar 

  18. Lau, D.T., Negash, A., Chen, J., Crochet, N., Sinha, M., Zhang, Y., et al. (2013). Innate immune tolerance and the role of kupffer cells in differential responses to interferon therapy among patients with HCV genotype 1 infection. Gastroenterology, 144(2), 402–13e12.

  19. Jung, K., Kang, M., Park, C., Hyun Choi, Y., Jeon, Y., Park, S. H., et al. (2012). Protective role of V-set and immunoglobulin domain-containing 4 expressed on kupffer cells during immune-mediated liver injury by inducing tolerance of liver T- and natural killer T-cells. Hepatology, 56(5), 1838–1848.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, L., Yin, W., Sun, R., Wei, H., & Tian, Z. (2014). Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology, 59(2), 443–452.

    Article  CAS  PubMed  Google Scholar 

  21. Marra, F. (2009). Selective inhibition of NF-kappaB in Kupffer cells: good, but not for everything. Gut, 58(12), 1581–1582.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmann, F., Sass, G., Zillies, J., Zahler, S., Tiegs, G., Hartkorn, A., et al. (2009). A novel technique for selective NF-kappaB inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion. Gut, 58(12), 1670–1678.

    Article  CAS  PubMed  Google Scholar 

  23. Kojima, S., Negishi, Y., Tsukimoto, M., Takenouchi, T., Kitani, H., & Takeda, K. (2014). Purinergic signaling via P2X7 receptor mediates IL-1beta production in Kupffer cells exposed to silica nanoparticle. Toxicology, 321, 13–20.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, X. L., Xia, Z. F., Wei, D., Ben, D. F., & Wang, Y. J. (2005). Role of p38MAPK signal transduction pathway in Kupffer cells production of TNF-alpha and IL-1beta in severely burned rats. Chinese Journal of Surgery, 43(3), 185–188.

    Google Scholar 

  25. Tasdogan, M., Memis, D., Sut, N., & Yuksel, M. (2009). Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis. Journal of Clinical Anesthesia, 21(6), 394–400.

    Article  CAS  PubMed  Google Scholar 

  26. Kalimeris, K., Christodoulaki, K., Karakitsos, P., Batistatou, A., Lekka, M., Bai, M., et al. (2011). Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiologica Scandinavica, 55(6), 740–748.

    Article  CAS  PubMed  Google Scholar 

  27. Tarassishin, L., Suh, H. S., & Lee, S. C. (2014). LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14. Glia., 62(6), 999–1013.

    Article  PubMed  Google Scholar 

  28. Lee, S. Y., Kim, H. J., & Han, J. S. (2013). Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells. Preventive nutrition and food science., 18(1), 23–29.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yang, W. S., Jeong, D., Nam, G., Yi, Y. S., Yoon, D. H., Kim, T. W., et al. (2013). AP-1 pathway-targeted inhibition of inflammatory responses in LPS-treated macrophages and EtOH/HCl-treated stomach by Archidendron clypearia methanol extract. Journal of Ethnopharmacology, 146(2), 637–644.

    Article  CAS  PubMed  Google Scholar 

  30. Abshagen, K., Eipel, C., Kalff, J. C., Menger, M. D., & Vollmar, B. (2007). Loss of NF-kappaB activation in Kupffer cell-depleted mice impairs liver regeneration after partial hepatectomy. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292(6), G1570–G1577.

    Article  CAS  PubMed  Google Scholar 

  31. Peng, Y., Gallagher, S. F., Landmann, R., Haines, K., & Murr, M. M. (2006). The role of p65 NF-kappaB/RelA in pancreatitis-induced Kupffer cell apoptosis. Journal of Gastrointestinal Surgery, 10(6), 837–847.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Cx., Liu, Nz. et al. Anti-inflammatory Effects of Propofol on Lipopolysaccharides-Treated Rat Hepatic Kupffer Cells. Cell Biochem Biophys 71, 845–850 (2015). https://doi.org/10.1007/s12013-014-0272-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0272-2

Keywords

Navigation