Skip to main content
Log in

Nanoparticle Inhalation Impairs Coronary Microvascular Reactivity via a Local Reactive Oxygen Species-Dependent Mechanism

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

We have shown that nanoparticle inhalation impairs endothelium-dependent vasodilation in coronary arterioles. It is unknown whether local reactive oxygen species (ROS) contribute to this effect. Rats were exposed to TiO2 nanoparticles via inhalation to produce a pulmonary deposition of 10 μg. Coronary arterioles were isolated from the left anterior descending artery distribution, and responses to acetylcholine, arachidonic acid, and U46619 were assessed. Contributions of nitric oxide synthase and prostaglandin were assessed via competitive inhibition with NG-Monomethyl-L-Arginine (L-NMMA) and indomethacin. Microvascular wall ROS were quantified via dihydroethidium (DHE) fluorescence. Coronary arterioles from rats exposed to nano-TiO2 exhibited an attenuated vasodilator response to ACh, and this coincided with a 45% increase in DHE fluorescence. Coincubation with 2,2,6,6-tetramethylpiperidine-N-oxyl and catalase ameliorated impairments in ACh-induced vasodilation from nanoparticle exposed rats. Incubation with either L-NMMA or indomethacin significantly attenuated ACh-induced vasodilation in sham-control rats, but had no effect in rats exposed to nano-TiO2. Arachidonic acid induced vasoconstriction in coronary arterioles from rats exposed to nano-TiO2, but dilated arterioles from sham-control rats. These results suggest that nanoparticle exposure significantly impairs endothelium-dependent vasoreactivity in coronary arterioles, and this may be due in large part to increases in microvascular ROS. Furthermore, altered prostanoid formation may also contribute to this dysfunction. Such disturbances in coronary microvascular function may contribute to the cardiac events associated with exposure to particles in this size range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LaDou, J. (2004). The asbestos cancer epidemic. Environmental Health Perspectives, 112, 285–290.

    PubMed  Google Scholar 

  2. LeBlanc, A. J., Chen, B. T., Frazer, D., Castronova, V., & Nurkiewicz, T. R. (2009). Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of Toxicology and Environmental Health Part A, 72, 1576–1584.

    Article  CAS  PubMed  Google Scholar 

  3. Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102, 589–596.

    Article  CAS  PubMed  Google Scholar 

  4. Garlick, P. B., Davies, M. J., Hearse, D. J., & Slater, T. F. (1987). Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research, 61, 757–760.

    CAS  PubMed  Google Scholar 

  5. Ferrari, R., Ceconi, C., Curello, S., Guarnieri, C., Caldarera, C. M., Albertini, A., et al. (1985). Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defences against oxygen toxicity. Journal of Molecular and Cellular Cardiology, 17, 937–945.

    Article  CAS  PubMed  Google Scholar 

  6. Grech, E. D., Dodd, N. J., Jackson, M. J., Morrison, W. L., Faragher, E. B., & Ramsdale, D. R. (1996). Evidence for free radical generation after primary percutaneous transluminal coronary angioplasty recanalization in acute myocardial infarction. American Journal of Cardiology, 77, 122–127.

    Article  CAS  PubMed  Google Scholar 

  7. Dreher, K. L. (2004). Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77, 3–5.

    Article  CAS  PubMed  Google Scholar 

  8. Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Cumpston, J. L., Chen, B. T., Frazer, D. G., et al. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and Fibre Toxicology, 5, 1.

    Article  PubMed  CAS  Google Scholar 

  9. Oberdorster, G. (1996). Significance of particle parameters in the evaluation of exposure-dose–response relationships of inhaled particles. Inhalation Toxicology, 8(Suppl), 73–89.

    PubMed  Google Scholar 

  10. Weisfeldt, M. L., Wright, J. R., Shreiner, D. P., Lakatta, E., & Shock, N. W. (1971). Coronary flow and oxygen extraction in the perfused heart of senescent male rats. Journal of Applied Physiology, 30, 44–49.

    CAS  PubMed  Google Scholar 

  11. Qi, X. L., Nguyen, T. L., Andries, L., Sys, S. U., & Rouleau, J. L. (1998). Vascular endothelial dysfunction contributes to myocardial depression in ischemia–reperfusion in the rat. Canadian Journal of Physiology and Pharmacology, 76, 35–45.

    Article  CAS  PubMed  Google Scholar 

  12. Cozzi, E., Hazarika, S., Stallings, H. W., III, Cascio, W. E., Devlin, R. B., Lust, R. M., et al. (2006). Ultrafine particulate matter exposure augments ischemia–reperfusion injury in mice. American Journal of Physiology. Heart and Circulatory Physiology, 291, H894–H903.

    Article  CAS  PubMed  Google Scholar 

  13. Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.

    Article  PubMed  Google Scholar 

  14. Bartoli, C. R., Wellenius, G. A., Coull, B. A., Akiyama, I., Diaz, E. A., Lawrence, J., et al. (2009). Concentrated ambient particles alter myocardial blood flow during acute ischemia in conscious canines. Environmental Health Perspectives, 117, 333–337.

    CAS  PubMed  Google Scholar 

  15. Kim, C., Kim, J. Y., & Kim, J. H. (2008). Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Reports, 41, 555–559.

    CAS  PubMed  Google Scholar 

  16. Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M. W., Wong, P. C., et al. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proceedings of the National Academy of Sciences of the United States of America, 95, 4556–4560.

    Article  CAS  PubMed  Google Scholar 

  17. Bondy, S. C., & Naderi, S. (1994). Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochemical Pharmacology, 48, 155–159.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenblum, W. I. (1987). Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles. Circulation Research, 61, 601–603.

    CAS  PubMed  Google Scholar 

  19. Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.

    CAS  PubMed  Google Scholar 

  20. Saitoh, S., Zhang, C., Tune, J. D., Potter, B., Kiyooka, T., Rogers, P. A., et al. (2006). Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2614–2621.

    Article  CAS  PubMed  Google Scholar 

  21. Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Stone, S., Chen, B. T., Frazer, D. G., et al. (2009). Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicological Sciences, 110, 191–203.

    Article  CAS  PubMed  Google Scholar 

  22. Hurum, D. C., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2005). Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. The Journal of Physical Chemistry. B, 109, 977–980.

    Article  CAS  PubMed  Google Scholar 

  23. Vasiliev, P. O., Faure, B., Ng, J. B., & Bergstrom, L. (2008). Colloidal aspects relating to direct incorporation of TiO2 nanoparticles into mesoporous spheres by an aerosol-assisted process. Journal of Colloid and Interface Science, 319, 144–151.

    Article  CAS  PubMed  Google Scholar 

  24. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  25. Sager, T. M., Kommineni, C., & Castranova, V. (2008). Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Particle and Fibre Toxicology, 5, 17.

    Article  PubMed  CAS  Google Scholar 

  26. Chilian, W. M., Eastham, C. L., & Marcus, M. L. (1986). Microvascular distribution of coronary vascular resistance in beating left ventricle. American Journal of Physiology, 251, H779–H788.

    CAS  PubMed  Google Scholar 

  27. Benov, L., Sztejnberg, L., & Fridovich, I. (1998). Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radical Biology and Medicine, 25, 826–831.

    Article  CAS  PubMed  Google Scholar 

  28. Morgan, A. R., Evans, D. H., Lee, J. S., & Pulleyblank, D. E. (1979). Review: Ethidium fluorescence assay Part II. Enzymatic studies and DNA–protein interactions. Nucleic Acids Research, 7, 571–594.

    Article  CAS  PubMed  Google Scholar 

  29. Nurkiewicz, T. R., & Boegehold, M. A. (2007). High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292, R1550–R1556.

    CAS  PubMed  Google Scholar 

  30. Okayama, Y., Kuwahara, M., Suzuki, A. K., & Tsubone, H. (2006). Role of reactive oxygen species on diesel exhaust particle-induced cytotoxicity in rat cardiac myocytes. J Toxicol Environ Health A, 69, 1699–1710.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, T., Chiang, E.T., Moreno-Vinasco, L., Lang, G.D., Pendyala, S., Samet, J.M., et al. (2009). Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. American Journal of Respiratory Cell and Molecular Biology. [Epub ahead of print] PMID: 19520919.

  32. Li, Z., Hyseni, X., Carter, J. D., Soukup, J. M., Dailey, L. A., & Huang, Y. C. (2006). Pollutant particles enhanced H2O2 production from NAD(P)H oxidase and mitochondria in human pulmonary artery endothelial cells. American Journal of Physiology. Cell Physiology, 291, C357–C365.

    Article  CAS  PubMed  Google Scholar 

  33. Ying, Z., Kampfrath, T., Thurston, G., Farrar, B., Lippmann, M., Wang, A., et al. (2009). Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicological Sciences, 111, 80–88.

    Article  CAS  PubMed  Google Scholar 

  34. Bai, Y., Suzuki, A. K., & Sagai, M. (2001). The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: Role of active oxygen species. Free Radical Biology and Medicine, 30, 555–562.

    Article  CAS  PubMed  Google Scholar 

  35. Knuckles, T. L., Lund, A. K., Lucas, S. N., & Campen, M. J. (2008). Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS. Toxicology and Applied Pharmacology, 230, 346–351.

    Article  CAS  PubMed  Google Scholar 

  36. Miller, M. R., Borthwick, S. J., Shaw, C. A., McLean, S. G., McClure, D., Mills, N. L., et al. (2009). Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environmental Health Perspectives, 117, 611–616.

    CAS  PubMed  Google Scholar 

  37. Lund, A. K., Lucero, J., Lucas, S., Madden, M. C., McDonald, J. D., Seagrave, J. C., et al. (2009). Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 511–517.

    Article  CAS  PubMed  Google Scholar 

  38. Courtois, A., Andujar, P., Ladeiro, Y., Baudrimont, I., Delannoy, E., Leblais, V., et al. (2008). Impairment of NO-dependent relaxation in intralobar pulmonary arteries: Comparison of urban particulate matter and manufactured nanoparticles. Environmental Health Perspectives, 116, 1294–1299.

    Article  CAS  PubMed  Google Scholar 

  39. Cherng, T. W., Campen, M. J., Knuckles, T. L., Gonzalez Bosc, L., & Kanagy, N. L. (2009). Impairment of coronary endothelial cell ET(B) receptor function after short-term inhalation exposure to whole diesel emissions. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297(3):R640–R647.

  40. Sherratt, A. J., Culpepper, B. T., & Lubawy, W. C. (1988). Relative participation of the gas phase and total particulate matter in the imbalance in prostacyclin and thromboxane formation seen following chronic cigarette smoke exposure. Prostaglandins Leukotrienes and Essential Fatty Acids, 34, 15–18.

    Article  CAS  Google Scholar 

  41. Nurkiewicz, T. R., Porter, D. W., Barger, M., Castranova, V., & Boegehold, M. A. (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environmental Health Perspectives, 112, 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  42. Nurkiewicz, T. R., Porter, D. W., Barger, M., Millecchia, L., Rao, K. M., Marvar, P. J., et al. (2006). Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environmental Health Perspectives, 114, 412–419.

    PubMed  Google Scholar 

  43. Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., & Silverman, F. (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105, 1534–1536.

    Article  CAS  PubMed  Google Scholar 

  44. Batalha, J. R., Saldiva, P. H., Clarke, R. W., Coull, B. A., Stearns, R. C., Lawrence, J., et al. (2002). Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environmental Health Perspectives, 110, 1191–1197.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carroll McBride and Kimberly Wix for their expert technical assistance in this study, and Travis Knuckles, Ph.D., for his help in reviewing this manuscript. This work was supported by the National Institutes of Health/National Institute for Environmental Health Sciences [grant numbers R01-ES015022 and RC1 ES018274 (to TRN)].

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Nurkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeBlanc, A.J., Moseley, A.M., Chen, B.T. et al. Nanoparticle Inhalation Impairs Coronary Microvascular Reactivity via a Local Reactive Oxygen Species-Dependent Mechanism. Cardiovasc Toxicol 10, 27–36 (2010). https://doi.org/10.1007/s12012-009-9060-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9060-4

KeyWords

Navigation